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The work of Agrawal et al. on the type of data mining known as association rule


mining has been the basis for continuous research over the past seven years. Kuok,


Fu and Wong have extended association rules with the fuzzy set theory of Zadeh


to build a system more adapted to real world data. Meanwhile Bloch has recently


applied this same fuzzy set theory to the area of image analysis, particularly to the


task of finding relationships between image objects. Koperski and Han have been


the leaders in adapting general data mining techniques, including association rules,


to the domain of spatial data. This thesis describes a synthesis of these techniques


to form a unified system for generalized image analysis, specifically finding general


fuzzy rules about the relationships of objects in image data sets. Experimental results


on synthetic data and real world data samples demonstrate that such a system is


effective in producing interesting rules.
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CHAPTER I


INTRODUCTION


With the rapid advancement in computing power, storage capacity, and


collection techniques, more and more spatial image data are being collected. This


data explosion is compounded by the fact that because the data sources, namely the


earth, sea and atmosphere, are dynamic, data often have to be recollected to be of real


use, creating another dimension to the data. But the raw data itself is only the first


step in understanding. Analysis is required to find useful generalized information,


but considering the volume of the data, human expert analysis becomes a tedious and


tiresome job. This problem has given rise to many algorithms and systems seeking


to extract useful generalized observations of various types. Such analysis commonly


goes by the broad term Knowledge Discovery in Databases (KDD) or sometimes


simply Knowledge Discovery - the finding of implicit and previously unknown or


unseen information in a database by the application of computer algorithms. In


fact, Fayyad et al. declare that “Knowledge Discovery is the most desirable end-


product of computing” (Fayyad et al. 1996). Unfortunately, they also concede that


it is “ . . . one of the most difficult computing challenges to do well”(Fayyad et al.


1996). Doing it well is a pursuit in which many researchers are engaged and they have


developed several techniques towards that end. A useful system could be constructed


by combining some of these existing techniques into a multi-layer system.


1
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1.1 Motivation


As mentioned before, much data is collected from spatial sources such as remote


sensing of the oceans and terrain. We are often interested in the nature of the many


components of such images, objects and regions (e.g., a stand of trees, coral reefs,


etc.) and may apply KDD techniques such as classification to extract these. But


now that we know the classes of the various entities in an image or more likely


a large set of images, what next? These components do not exist by themselves;


they exist in an image (and on the earth in the case of real world remote sensing)


along with many other objects. We would like to know the relationships among the


objects. For example, “Sandy ocean bottom #235 occurs 2 miles to the right of coral


reef #769” in an image (which may in turn mean east or down current in the real


world). Or “Grassy meadow area #114 is located 5 miles above deciduous forest


#80.” However, considering the volume of data, even individual spatial relations


may not be of interest to us. Rather, generalized information on aggregates of the


data is more immediately useful. How does one class of region relate to other classes?


An answer, courtesy of a specific KDD system, might be “Lakes (a class) tend to


occur next to mountains (another class)” or “Sandy bottoms (a class) tend to occur


close to and below coral formations (another class).” A more recognizably useful


scenario might be:


• Discovered “Rocky bottoms usually occur to the west (having corrected for real
world orientation) of bottom type #12”.


• Bottom type #12 has often proven a good place to drill for oil.


• Remote sensing data shows no bottom type #12 - only a rocky bottom.


• However, knowing the general relationship of the two classes, let’s focus on the
area west of the rocky bottom and see what turns up.
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A real world example is the joint project between the Naval Oceanographic


Office (NAVO) and the Mississippi State University Computer Science Department,


in which undersea side-scan SONAR data is being analyzed by a research group


(Bridges et al. 1998). The image data is being processed by region growing


techniques and the Bayesian classifier Autoclass, which partitions the sea-floor data


into discrete regions of relatively few classes. Doing this effectively and efficiently is


the current focus of the research. Generalizing these results in their spatial context


is a next step. A rule induction system could be used to take the classified image set


and discover the generalized spatial nature of the component parts, thereby providing


more human usable information about the data.


1.2 Background


In 1993, Agrawal, Imielinski and Swami presented their theory of association


rule mining for finding generalizations in a database, with their initial test domain


being retail store transaction data. The application is not limited to this domain,


but can be applied to general boolean attribute data (e.g., item is/is not purchased,


person is/is not married, system is/is not operational). Indeed subsequent research


has extended the technique to categorical attributes (e.g., car make in {Ford, GM,


Toyota, Daimler, etc.}) and quantitative attributes (e.g., client Age in [18-24], [25-


30], [30-35], etc.). Kuok, Fu and Wong have even extended that with fuzzy set theory


to extract fuzzy association rules from quantitative data (e.g., if client Age in ‘Young


Adult’ to some degree then income is ‘Low’ to a certain degree for some percentage


of the database).


Among the researchers exploring association rules are Koperski and Han (1995)


who have been applying a variety of other data mining techniques to spatial data,
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data pertaining to the position of objects in a space. Koperski and Han attempt


to make generalizations along the lines of: 65% of houses are west of a lake. While


they do acknowledge the mining of image or raster data, they typically work on data


actually in a spatial database system in which the data has already been broken


down and analyzed to a certain degree for its initial insertion into such a system.


Along those lines, Ordonez and Omiecinski (1999) have done a preliminary


investigation into rule mining from true image data, using a Blobworld image analysis


backend to extract objects from raster images. They then transform these blob data


into a meta-database analogous to that of Agrawal et al. That is to say, an important


part of their technique is the preparation of the image data to create something like


a spatial database mentioned above. Standard mining techniques are applied to the


meta-data to mine association rules describing the relationship between objects in


the image base, namely co-occurence, e.g., images with a square tend, depending on


the rule support and confidence, to also contain triangles.


Also somewhat similar is the work of Bloch, who has developed techniques for


finding spatial relationships between objects, mainly directional attributes. The chief


differences are:


1. She, like Ordonez and Omiecinski, is working in imagespace (such as MRI
scans) rather than in object space.


2. She is using fuzzy set theory to take into account the varying morphology (i.e.,
size and shape) of the objects in question, which can have an impact on how
best to describe the spatial relationship.


3. Her work is on the specific object relations, rather than mining generalized
rules.


The result of Bloch’s techniques is not a single precise number but a range which


actually captures the imprecision of the relationship.
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Fuzzy set theory is a generalization of classical set theory that was first proposed


by Zadeh in 1965. Whereas an element of a classical or crisp set is either totally in


a given set or not in it at all, fuzzy set theory allows for elements to be in a set to


a degree ranging from total inclusion to total exclusion. The former works fine for


domains where set membership is indeed a binary relationship such as belonging to


a sports team or being a US state. The latter is useful for situations such as the set


of all TALL people or OLD people, sets which have no sharp boundaries unless they


are arbitrarily imposed. The applications above exploit this feature for their own


designs. An object A is to the RIGHT of object B to some degree in a Bloch image.


A person is in the ‘Young Adult’ set to some degree: 1.0 for a 22 year old; 0.3 for a


16 year old.


1.3 Hypothesis and Main Goals


The hypothesis of this work is that a synthesis of the fuzzy spatial relation


techniques of Bloch (1999) and the fuzzy association mining methodologies of Kuok,


Fu and Wong (1998) and others, enables the extraction of general fuzzy spatial


rules in an image or set of images. We restrict our attention to raster data and


operate in image space as opposed to the object space used in true spatial databases


(Koperski, Adhikary and Han 1996). Our goal is to use these combined techniques


to extract general rules describing exclusively directional relationships of image


components, i.e., pixel-based objects, from segmented, classified raster data. The


integration of Bloch’s approach (1999) allows the implicit consideration of spatial


object morphology. When used in conjunction with techniques for fuzzy association


rule mining, information can be mined that describes the certainty of the extracted


rules in terms of a fuzzy membership interval. This investigation focuses on two
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basic fuzzy association forms describing directional relationships in two dimensions.


Additional spatial data attributes, namely inter-object distance and object size


(relative or absolute), are not explicitly taken into account, but are reserved for


future work. The extension of the basic rule forms describing directional relationships


such as “south of” to encompass higher level descriptions of relationships such as


“surrounded by” is also reserved for future work.


1.4 Organization


The remaining chapters are organized as follows:


• Literature Review: A survey of the source work used for this research.


• Theory: the proposed formalism and methods upon which this research is based
including


– Relations: the nature of extracted object relations


– Rule forms: what our spatial rules will look like and how they are achieved
from the relations


– Support and confidence: the metrics used to gauge the importance and
usefulness of the rules.


• Experimental Results: details on the testbed implementing the theory, the
complexity incurred, the data used to test, and results from that data; also
included is a description of the application of parallelism to the process.


• Conclusion: Analysis of the results; a large part of this chapter will discuss
avenues for future work - additional features, more advanced rule forms,
possible improvements, etc.


• Appendices are included as well, offering some sample visualizations and
tablular result data.







CHAPTER II


LITERATURE REVIEW


2.1 Fuzzy Logic/Fuzzy Sets


In 1965, Lotfi Zadeh presented his controversial theory of fuzzy sets (Zadeh


1965), and he is generally recognized as the founder of the discipline, though


Black (1937) did discuss the related concept of vagueness as far back as 1937, and


some have pointed out that there were considerations on the issue of a region between


true and false as far back as Plato (Brule 1985). What Zadeh proposed was a


generalization of classical set theory to handle the inexactness, approximation and


what he calls elasticity of real life, such as the concepts tallness or nearness.


We will assume the reader has an understanding of the basics of classical set


theory, its properties, and operations such as union and intersection, and so will


not review those fundamentals here except to say a word about the notion of a


characteristic function. One of the common ways of describing a set is by giving


its characteristic function (Schmucker 1984), and in fact a set and its characteristic


function are often used interchangeably. A characteristic function is one that maps


the elements of the universe of discourse onto the two element set {0, 1}, sometimes


called a valuation set (Dubois and Prade 1980). This means that given a universe


X and a subset A:


charA(x) =







1 iff x ∈ A


0 iff x 6∈ A


7







8


For example, given a universe X = {a, b, c, d, e, f, g}, a characteristic function could


yield a subset A:


A = {a/1, b/0, c/0, d/1, e/0, f/1, g/0}


as a result. Customarily, false members are not shown, nor are the characteristic


values (there could be only one) resulting in the more familiar roster form


A = {a, d, f}


(which we can do for a finite subset of a finite universe). This works fine for domains


in which set membership is truly binary such as the set of all students currently


enrolled at Mississippi State University, or the set of all Nobel Laureates. It does


not work for less precise everyday concepts such as the set of all TALL men in the


room or the set of all stores CLOSE to a residence.


To handle these imprecise scenarios, Zadeh proposes defining set membership


not on the finite two-valued set {0, 1} but rather over the real interval [0, 1]. Set


elements can still take the old characteristic values or membership values of 0 and


1 - but they can also now take on say 0.7 or 0.34 indicating partial set membership


or a degree of membership. This fuzzy set can be described by a different kind of


characteristic function, a membership function denoted by µA(x) and taking values


in [0, 1].


For example, given the same universe as above X = {a, b, c, d, e, f, g}, a


membership function could yield a fuzzy subset A:


A = {a/0.9, b/0.23, c/0, d/0.7, e/0.4, f/1, g/0}
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as a result. Again, completely false members (i.e., with a 0 degree of membership)


are not shown. However, other fuzzy membership values are retained. A roster form


in this case would be


A = {a/0.9, b/0.23, d/0.7, e/0.4, f/1}


This concept of partial membership allows us to represent real world concepts


more in line with the everyday manner in which we consider them. Returning


to the example of the set of TALL people, classifying 7’1” Frank as TALL


( µTALL(Frank) = 1) and 4’10” Cathy as not TALL ( µTALL(Cathy) = 0) was


not a problem before with classical sets. But what about 5’11” David? The typical


natural language response is probably along the lines of “sort of” or “somewhat”


and assigning classical set membership can be difficult and unsatisfactory. However,


µTALL(David) = 0.7 better captures the imprecision of the real world description.


Along these same lines, the fuzzy membership function eliminates the crisp boundary


between classical set inclusion and exclusion which is often capricious and arbitrary.


For example the classical set RICH may be designated by a characteristic function by


which all people with income at or above $80,000 are members. Someone with income


of $79,999 is not RICH while someone making $80,000 is RICH. So the difference


between RICH and not RICH is now a mere dollar which is unrealistic. A gradual


fuzzy membership function remedies this: Warren Buffett is still 100% RICH and


someone barely scraping by is still 0% RICH but the path from the one to the other


is smoother, with the $79K employee being in RICH to some degree.


Exactly what the fuzzy membership function looks like is not carved in stone but


is chosen by the user based on his needs and domain knowledge. There are however


several common standard membership functions including trapezoidal, triangular,
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Gaussian, bell curves, and sigmoid (Yen and Langari 1998). Some examples are


(Yen and Langari 1998):


triangle(x : a, b, c) =







0 iff x < a


(x− a)/(b− a) iff a ≤ x ≤ b


(c− x)/(c− b) iff b ≤ x ≤ c


0 iff x > c


gauss(x : m, σ) = exp


(
−(x−m)2


σ2


)
.


Again, which is used depends on the domain, and the values of the a, b, c,m, σ may


depend on domain specific knowledge gathered by the user or through some other


means, or whatever other information he/she wants.


Since fuzzy set theory is a generalization of classical set theory, it stands to


reason that there are operations analogous to those on classical sets, including, but


not limited to, complement/negation, intersection/disjunction, union/conjunction,


and cardinality.


The complement of a fuzzy set is simply 1 - membership. That is:


µ¬A(x) = 1− µA(x).


This makes sense; if an item is in set Q to degree 0.75, it stands to reason that it is


NOT in set Q to degree 0.25.
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Things are more difficult with union and intersection. Fuzzy set theory does


not have an intersection/disjunction operation per se but rather a class of operations


called triangular norms or t-norms. A t-norm is a two-valued function that maps


pairs [0, 1] × [0, 1] onto a single value in [0, 1]. A t-norm is formally defined as


satisfying a certain set of axioms.


A t-norm, denoted t(a, b), satisfies the following axioms for any a, b, c, d ∈ [0, 1],


(where a, b, c, d could be interpreted as fuzzy membership values µA(x), µB(x), µC(x),


and µD(x) respectively, where x ∈ X, the universe):


1. t(0, 0) = 0; t(a, 1) = t(1, a) = a (function boundaries)


2. t(a, b) ≤ t(c, d) whenever a ≤ c and b ≤ d (monotonicity)


3. t(a, b) = t(b, a) (commutativity)


4. t(a, t(b, c)) = t(t(a, b), c) (associativity)


Also, the the inequality


td(a, b) ≤ t(a, b) ≤ min(a, b)


where td is the drastic product or


td(a, b) =







min(a,b) if max(a, b) = 1


0 a, b < 1


must be satisfied (Yen and Langari 1998).


In a similar fashion, fuzzy union/conjunction is implemented by a class of


operations called t-conorms. For the same conditions above, a t-conorm, denoted


s(a, b), satisfies the following:


1. s(1, 1) = 1; s(a, 0) = s(0, a) = a (function boundaries)


2. s(a, b) ≤ s(c, d) whenever a ≤ c and b ≤ d (monotonicity)
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3. s(a, b) = s(b, a) (commutativity)


4. s(a, t(b, c)) = s(s(a, b), c) (associativity)


Also,the inequality


max(a, b) ≤ s(a, b) ≤ sd(a, b)


where sd is the drastic sum or


sd(a, b) =







max(a,b) if min(a, b) = 0


1 a, b > 0


must be satisfied.(Yen and Langari 1998) Furthermore, these operations are pairwise


related:


tm(a, b) = 1− sm(1− a, 1− b)


and vice versa.


Given these operator classes, one can then say:


µA∩B(x) = tm(µA(x), µB(x))


where tm is some t-norm.


Since, these are classes of operations, we can choose the ones that best suit our


domain, provided they adhere to the axioms and are implemented in dual pairs. For


example, we may choose to use the Einstein product t-norm out of the huge number


of choices (Zimmerman 1996):


tEinstein(a, b) =
a · b


2− [a + b− a · b] .
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However, when the time comes to apply the fuzzy set union operation, the


corresponding Einstein sum t-conorm should be used for consistency.


That said, Bellman and Giertz (1973) have made a case for the standard fuzzy


set union and intersection operations first used by Zadeh, as the best and most


natural extensions of classical set theory:


µA∩B(x) = tstd(µA(x), µB(x)) = min(µA(x), µB(x)), and


µA∪B(x) = sstd(µA(x), µB(x)) = max(µA(x), µB(x)).


Another often useful operation or property of classical sets is cardinality which


is basically a count of the number of elements in a set, assuming the set in question


is finite. However, since elements of fuzzy sets are often not completely in the


set, it seems incorrect to count each member regardless of degree of membership.


Fortunately the answer is quite simply the sum of the fuzzy memberships (Dubois


and Prade 1980):


|A| =
∑
x∈X


µA(x).


This formula also works correctly on a classical set.


As useful as these analogous operations are, it is important to point out what


is noticeably absent in fuzzy sets. Returning once again to the earlier example,


X = {a, b, c, d, e, f, g}, with a fuzzy subset


A = {a/0.9, b/0.23, c/0, d/0.7, e/0.4, f/1, g/0}







14


using the aforementioned complement operation yields:


¬A = {a/0.1, b/0.77, c/1, d/0.3, e/0.6, f/0, g/1}.


Applying the standard fuzzy union and intersection operations results in:


A ∪ ¬A = {a/0.9, b/0.77, c/1, d/0.7, e/0.6, f/1, g/1}, and


A ∩ ¬A = {a/0.1, b/0.23, c/0, d/0.3, e/0.4, f/0, g/0}.


Recall from classical set theory that given a boolean set B in a universe X:


B ∪ ¬B = X, and


B ∩ ¬B = ∅


These are known as the the Law of Excluded Middle and the Law of Contradiction


(Yen and Langari 1998) respectively, and they are conspicuously absent from


generalized fuzzy theory. For some, this represents a failing of fuzzy logic, but


for others it is thoroughly in line with expectations. The very nature of fuzzy set


membership is that an element can be both in a set and in its negation simultaneously.


2.2 Fuzzy Relative Positioning


Dr. Isabelle Bloch of the Ecole Nationale Supérieure des Télécommunications


in Paris has been applying the theory of fuzzy sets to the problem of analysis of


spatial relations of objects in images (Bloch 1999). We often want to describe the


relationships between objects with imprecise natural language terms like “above” or


“to the right of.” This is made difficult by the facts that
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• in real life objects are simply not always exactly “to the left of” other objects
but can be offset.


• the shape and size, the morphology, of objects has an impact on their spatial
relationship.


If a man is standing to the exact left of a woman and then shuffles forward a


few inches, he does not completely cease to be to her left - just to a lesser degree.


A man standing in the angle of a large L -shaped building may be both to the right


and below it (assuming a bird’s-eye view). As he walks away, he may continue to be


to the right and be below for several yards.


Bloch offers a new methodology for dealing with this phenomenon in such


domains as medical imaging, in both 3D and 2D space. Bloch actually utilizes fuzzy


theory in two different ways. The main one is the directional relationship between


objects in an image space as mentioned above. In other words, object A can be to the


right of object B to some fuzzy degree. But objects themselves can also be defined


as fuzzy sets to account for possible spatial imprecision, defined on the universe S,


the image itself. The elements of such a set are simply the points or pixels in the


object. Being a fuzzy set, an object A can be represented by fuzzy membership


function µA(x), x ∈ S on the interval [0, 1]. It should be noted that since crisp sets


are specializations of fuzzy sets, this definition can handle crisp objects taking only


the values 0 and 1 as well.


Since Bloch’s method is designed to work in 3D space, a direction is defined by


two angles α1 ∈ [0, 2π], a heading, and α2 ∈ [−π
2
, π


2
], an elevation where α = (α1, α2).


This then yields the unit vector


~uα1,α2 = (cos α2 cos α1, cos α2 sin α1, sin α2)
t (2.1)
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for evaluation. If we choose to work only in 2D space, then α2 = 0 or we could


simply let α = α1.


Given this α, we want to find the degree to which an object A, defined by µA(x),


is direction α of a reference object R (µR(x)), which is simply another object in the


image universe. This is done by first constructing what Bloch refers to as a landscape


which is the area


. . . around the reference object R . . . such that the membership value of


each point corresponds to the degree of satisfaction of the spatial relation


under examination(Bloch 1999).


This landscape is itself a fuzzy set, denoted by µα(R)(x), where “in the direction


α” is the spatial relation in question. A visualization of such a landscape is shown


in Figure 2.2, generated from the sample image in Figure 2.1. Each point in the


image space, excluding the points of the square object itself, takes a grey value from


black to white indicating the degree of its membership in the fuzzy relation “in the


direction α = 0 of the square reference object, R”. White indicates full membership,


black indicates null membership, and the greys are various degrees in between. The


object itself has been explicitly colored black.


Theoretically this landscape potentially extends over the entire universe, but


practically speaking a full roster generation is neither computationally desirable nor


necessary. We are only interested in the overlap between the landscape of R and


object A, specifically a function of µα(R)(x) and µA(x), x ∈ S, which will indicate


the relationship between the points in A and the points in R.


The final result is not actually a single fuzzy value, but rather three values


that represent an interval and a likely estimate. The values of the overlap function
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Figure 2.1: A shape object in space Figure 2.2: Landscape for Figure
2.1 at α = 0


iterated over the points in the objects are evaluated in the following forms:


Possibility
R∏


α1,α2


(A) = sup
x∈S


t[µα(R)(x), µA(x)] (2.2)


Necessity


NR
α1,α2


(A) = inf
x∈S


s[µα(R)(x), 1− µA(x)] (2.3)


Mean


MR
α1,α2


(A) =
1


|A|
∑
x∈S


µA(x)µα(R)(x) (2.4)


where t[] is a fuzzy t-norm, s[] is a fuzzy t-conorm, supremum is least upper bound,


and infinum is greatest lower bound. The possibility is an optimistic result - a


kind of max; necessity is a pessimistic result - a kind of min; mean is the average


membership degree over all the points. Together they express the value and interval


M ∈ [N, Π]. In Bloch’s opinion this can further represent the imprecision of the


spatial relationship.
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As stated in the section on fuzzy sets, the membership function for a fuzzy


set is chosen by the user based on the various requirements of the domain. For the


landscape function µα(R) Bloch has chosen a basic linear function


µα(R)(P ) = max


(
0, 1− 2βmin(P )


π


)
, P ∈ S (2.5)


which turns the angle β into a fuzzy value in [0, 1] (Again, while P ∈ S,


computationally this is typically only calculated when P ∈ A, A being the other


object in question). βmin(P ) is the minimum of all the angles β(P, Q) where Q ∈ R,


and


β(P, Q) = arccos


[−→
QP · ~uα1,α2


‖−→QP‖


]
(2.6)


where
−→
QP is the vector from the point in R to the point in A. So we are essentially


iterating over the points in A and finding the best angle to a point in R. This angle


is compared to the specified angle α.


2.3 Association Rules


The idea of association rule mining as a useful KDD technique was first put


forth in 1993 by Agrawal, Imielinski and Swami (1993) based on experiments with


retail store transaction database testbeds.


In short, an association rule takes the form


antecedent ⇒ consequent(c% confidence, s% support)
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where the antecedent consists of one or more items in the set of transactions being


mined and the consequent consists of only one item not in the antecedent.


The support is the percentage of all transactions in the database containing


both the antecedent and the consequent, and it measures the significance of the rule


in the database. The confidence is the percentage of those transactions containing


the antecedent which also contain the consequent and measures the strength of the


rule. Together these two are the principal constraints on the association rule mining


process.


A classic example of an association rule is:


beer ⇒ chips(87% confidence, 3% support)


Here 3% of all transactions (i.e., possibly a basket of goods purchased by a customer


on a store visit) in the database contain both beer and chips. It should be noted


that the opposite does not necessarily follow; transactions containing chips may not


include beer as well. Store management may be able to use rules such as these to


make decisions about store operations: where to place displays, when to have sales


and on what products, etc.


Following the notation of Agrawal, Imielinski and Swami, we formally define


association rules as follows:
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I is the set of all items, aka binary attributes, in the database; I =


{I1, I2, . . . , Im}
T is the transaction database


t is a transaction; t ⊆ I
X is a set of some of the items; X ⊆ I
t satisfies X if, for each item in X, t contains that item; X ⊆ t


An association rule is X ⇒ Ij s.t. X ⊆ I ∧ Ij ∈ I ∧ Ij 6∈ X


X ⇒ Ij is satisfied in T with confidence 0 ≤ c ≤ 1 iff at least c% of


transactions in T which satisfy X also satisfy Ij.


The result is sometimes written X ⇒ Ij | c


Items are sometimes called binary attributes because they can be viewed from a


boolean point of view. Either In is in a transaction or it is not. Both transactions


and itemsets are simply sets of items in the universe I.


Additional constraints can be placed on antecedent and consequent to generate


more immediately useful rules such as


“Antecedent must contain In” or


“Consequent must be an element of a given set Q”.


The application of user-defined constraints other than support and confidence is a


subject for study in itself (Ng et al. 1998; Silberschatz and Tuzhilin 1996; Smith


1999).


Support is an important constraint on the resultant rule, measuring statistical


significance and often business significance (given that these initial experiments are


retail oriented). Low support may indicate low preferences or rules that are not


worth further examination.
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Agrawal et al. (1993) decompose the Association Rule Mining problem into two


main subproblems:


1. Finding largeitemsets (aka frequent itemsets). These are itemsets that exceed
the minimum support (minsupp) threshold supplied by the user. These large
itemsets will be used to generate the rules. They may be further pruned
by additional constraints. Not surprisingly, itemsets that do not meet the
threshold are small or infrequent itemsets.


2. Generating all the rules for each previously found large itemset. Formally:


large itemset Y = {I1, I2 . . . , Ik}, k ≥ 2 will generate rules X ⇒ Ij such that
X ⊆ Y , | X |= k − 1 and Ij = Y −X, i.e., X ⇒ Y −X. Put another way, Y
is the union of the antecedent and consequent of every rule derived from it.


To enforce the user specified minimum confidence (minconf ) threshold c:


if support(Y )/support(X) > c then the rule satisfies c.


Obviously we must have the support of X available for this. NOTE: As for
minsupp, we know that Y is large from (1), and we know that X is large
because all subsets of a large itemset are also large.


2 Agrawal, Imielinski and Swami (1993) mainly focus on the first subproblem and


offer a custom algorithm (later know as AIS), bearing in mind that


• measuring all possible itemsets on one pass could result in checking 2m combos
in a database where the number of items, m, could easily reach 1000; and


• measuring only size k itemsets on kth pass, building up candidates on each
could result in many passes (k = 1000).


In a subsequent paper, Agrawal and Srikant (1994) offer some refinements,


particularly:


• A relaxation of the requirement that rule consequents be a single item - sets of
items are now allowed.


• A new algorithm, Apriori, and its variants, which are significantly faster than
the previous AIS algorithm.


Apriori and its brethren tackle the first subproblem previously laid out - that of


finding all large itemsets from which actual rules would then be derived. It attempts


to relieve problems of the AIS algorithm in which too many candidates that turn out
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small are generated. Simply put, Apriori takes the set of large k − 1 itemsets (i.e.,


knowledge it has a priori), joins them to create a new set of k-itemsets, and prunes


the ones whose subsets are small. This follows from the logic that since any subset


of a large set must be large then:


a) large k − 1 itemsets can alone be used to to generate candidate large
k-itemsets.


b) Any k-itemset with small k − 1 subsets cannot be large.


Apriori is significant because it is efficient, relatively simple, and it scales


well and has thus been used by much subsequent research as either a baseline for


comparison of new techniques or as the core algorithm for the development of new


techniques and domain specific modifications.


These initial forays into the realm of association rules dealt primarily with


binary attributes making the results Boolean Association Rules. Either a transaction


contains “soda” or it does not - true or false. But other kinds of data exist, specifically


quantitative such as price, which have values over a range, and categorical such as


brand (e.g., Dell, IBM, Compaq, etc.). Srikant and Agrawal (1996) want to mine


Quantitative Association Rules in order to gain information about this kind of data


and would like to do it with the rule infrastructure already in place. A simple


approach would be to partition the ranges and categories thereby mapping them


onto binary attributes, allowing us to apply the foundational binary association rule


techniques discussed earlier (e.g., Apriori algorithm). For example


• Price = 1200/Price 6= 1200


• Brand = Dell/Brand 6= Dell


or if there are many values, use intervals:


• Price ∈ [1000, 1500]/Price 6∈ [1000, 1500].
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A transaction in this database would now contain (or not contain) the item Price


= 1200, which could be mined like other items. Unfortunately, this partitioning can


actually cause some contradictory problems. A few large intervals can encompass


many tuples and thus have high support while many smaller intervals, while being


more selective, may yield low and perhaps unacceptable support. On the other hand,


a small interval, say Age ∈ [21, 22] may provide for a nice specific high confidence


rule such as


Age ∈ [21, 22] → GraduatedCollege(80%)


whereas widening the interval to gain support brings in more negative tuples lowering


the rule confidence:


Age ∈ [18, 22] → GraduatedCollege(40%)


not to mention losing some of the rule’s focus. A tighter interval may boost confidence


but lower support and vice versa.


Srikant and Agrawal attempt to counter this by mining across all values or


intervals, which have been coded with a new integer representation, and then


selectively combining them to increase support, producing additional, more general


“items” as there are called. For example, Price ∈ [500, 999] and Price ∈ [1000, 1499]


may both be probed for support in the database, leading to Price ∈ [500, 1499]


being examined as well. All three could have minsupp and be used to find rules.


The obvious problem here is that such a sweeping approach will incur much more


computing time. They try to relieve this by adding a maximum support constraint


to limit the combinations, though a lot of computing time will still be needed overall.







24


The other less apparent caveat is the output of an excessive number of rules which


could be either redundant or simply not useful. For example,


Price ∈ [500, 1499] ⇒ Mem ∈ [64, 128] (75%sup, 80%conf)


Price ∈ [500, 999] ⇒ Mem ∈ [64, 128] (25%sup, 78%conf)


shows that the second rule is essentially contained in the first and hardly conveys


any more information. On this front Srikant and Agrawal have offered an automated


measure of interest calculation to prune such redundancies before presentation to


the user.


While quantitative rules do open up another kind of attribute to association


rule mining, Kuok, Fu and Wong (1998) contend that there are still some limitations


that need to be dealt with. Namely, the harsh boundaries created by the partitioning


of quantitative attributes into intervals cause an unnatural division of the data and


subsequently of the resultant rules. For example, the intervals Age ∈ [20 − 29] and


Age ∈ [30 − 39] create an abrupt shift at the 29 year point, though in reality there


is none. This is essentially the same problem discussed earlier regarding the term


RICH and the crisp cutoff point (≥ $80, 000) for membership in that set. Kuok et


al. (1998) offer a similar remedy for rule mining.


Quite simply, they propose fitting quantitative rules with fuzzy set theory to


create Fuzzy Association Rules. Instead of the above Age intervals, the attribute


Age could be partitioned into linguistic fuzzy sets still backed by the intervals at


the membership function level. For example, we could have Age ∈ young adult and


Age ∈ adult, whose boundaries are fuzzy. Quantities of 21 - 28 could still have


maximal membership (1.0) in the young adult set with membership beginning to


decrease at 20 and 29. Ages 30 and above could also be members of the set but to a
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lesser and lesser degree. Likewise, ages 29 and below would be members of the adult


set to some degree.


Kuok, Fu and Wong (1998) offer this formalism for their Fuzzy Association


Rule technique (cf. Agrawal, Imielinski and Swami above):


T is transaction database of n tuples t: T = {t1, t2, . . . , tn}
I is the set of all items or attributes (e.g., Age, Price, etc.) in the


database; I = {I1, I2, . . . , Im}
Each item Ik can have membership in its own fuzzy sets:


FIk
= {f 1


Ik
, f 2


Ik
, · · · , fm


Ik
}, e.g.,


Fage = {young adult, adult, middle− aged, senior}
Fheight = {short, average, tall}


A Fuzzy Association Rule is


X is A ⇒ Y is B s.t. X ⊆ I ∧ Y ⊆ I ∧X ∩ Y = ∅
Also


A = {fx1 , fx2 , . . . , fxp} | xk ∈ X ∧ fxk
∈ Fxk


B = {fy1 , fy2 , . . . , fyq} | yk ∈ Y ∧ fyk
∈ Fyk


Just as fuzzy set theory requires its own operations analogous to classical set


operations, such as union, so too does fuzzy association rule mining. Boolean


association rules involve finding all large or frequent itemsets which meet a user-


specified support threshold, support being the percentage of all database tuples


which contain all elements of the itemset in question. Kuok et al. (1998) present


an analogous measure called significance to gauge an itemset’s frequency in the


database. The major difference is, since we are dealing with fuzzy sets, each item’s


presence is weighted by its fuzzy membership degree in [0,1] before being divided
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by the number of tuples in the database T . In this respect, significance is similar


to a fuzzy cardinality operation. Formally, Kuok, Fu and Wong (1998) give the


significance factor, S〈X,A〉 as:


Significance =
Sum of votes satisfying 〈X, A〉


Number of tuples in T


S〈X,A〉 =


∑
ti∈T


∏
xj∈X


{αaj
(ti[xj]))}


total(T )


where


αaj
(ti[xj])) =







µaj
(ti[xj]) iff µaj


≥ ω


0 otherwise
aj ∈ A


One thing to note here: the function αaj
is a standard fuzzy operation known as an


alpha-cut which is simply a threshold applied to a fuzzy set, in this case µaj
, that


zeroes out memberships below a certain degree, in this case 0 < ω ≤ 1.


Since we are using a product operation, any fuzzy membership that is zero,


causes the measure for the entire tuple to be zero - the desired result. An unsupported


attribute makes the entire attribute set useless for the significance calculation of that


tuple. All tuple products, each having been weighted by the attribute fuzzy values,


are then summed and compared to the database as a whole, giving the fuzzy support


or significance. Notice that if this operation were applied to crisp sets, as long as


0 < ω ≤ 1 (which it should always be), the products will always end up as either 0


or 1 and the final result will be the classical itemset support as in the original work


by Agrawal, Imielinski and Swami (1993).
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If there is a fuzzy analogy to support, it stands to reason that there is also one


for confidence. Kuok et al. (1998) offer a calculation for the certainty factor of a


resultant rule, based on the above defined significance.


Not surprisingly, this factor is directly related to the confidence measures of


classical association rules, which can be calculated on a rule from itemset Y :


confX⇒Y−X =
supp(Y )


supp(X)
where X ⊂ Y


In like fashion, Kuok et al. (1998) offer:


Certainty = C〈〈X,A〉,〈Y,B〉〉 =
S〈Z,C〉
S〈X,A〉


where Z = X ∪ Y,C = A ∪B


for a rule ‘If X is A then Y is B’, which is a logical extension of the


support/significance analogy.


Through application of these techniques, Kuok, Fu and Wong believe they


present a more robust system for mining useful real-world rules on quantitative data,


utilizing fuzzy set theory operations.


2.4 Spatial Data Mining


According to Fayyad et al.(1996), Data Mining is the algorithmic application


step of the full KDD (Knowledge Discovery in Databases) process which also includes


input preparation and output interpretation and utilization. Even so, it is a very


broad term encompassing such subfields as clustering, neural networks, rule mining,


etc. An important consideration when discussing data mining is the type of data


being mined. General data mining literature usually centers on data typically


found in a standard relational database system (RDBMS): retail transaction data,
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personnel data, client data, and the like. For the past several years, Jiawei Han and


Kris Koperski have been among the chief exponents of Spatial Data Mining which


they describe as


. . . the extraction of implicit knowledge, spatial relations, or other


patterns not explicitly stored in spatial databases (Koperski and Han


1995).


A spatial database system is generally one like an RDBMS that has support


for spatial data structures (e.g., MBRs - Minimal Bounding Rectangles), spatial


operations (e.g., Spatial Join), and general spatial access methods or SAMs


(Koperski, Han and Adhikary 1998). That said, a spatial database would not be


exclusively tasked with handling spatial data, but in RDBMS fashion, would need to


hold or have access to non-spatial data related to the spatial objects as well. Simply


having a spatial object A and spatial object B is not as useful as knowing also that


object A is a house and object B is a lake. In fact one of the uses for spatial data


mining is “discovering relationships between spatial and nonspatial data” (Koperski,


Han and Adhikary 1998).


Along these lines, Koperski and Han (1995) have done work on adapting the


techniques of regular database association rule mining as presented by Agrawal,


Imielinski and Swami (1993) for use with spatial data. Like the originals,


spatial association rules still take the form X ⇒ Y (c%) except rather than


representing items or sets of items, X and Y now stand for spatial or nonspatial


predicates(Koperski, Han and Adhikary 1998) such as west of(x, y), spatial, since it


deals with the objects location in space, or isa(x, lake), nonspatial, since it describes


the nature of the object but not its position. This is not far removed from the original


association rule definition since these are boolean rules with binary attributes (“item
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X is present or it is not”). The aforementioned predicates are essentially the same


thing. Rules involving various combinations of these could be mined to uncover


hidden information about the data. For example,


isa(x, golfcourse) ⇒ contains(x, lake)(100%)


isa(x, town) ⇒ adjacent to(x, river)(81%)


close to(x, beach) ∧ isa(x, house) ⇒ price(x, high)(76%)


are spatial association rules saying golf courses always have lakes inside, towns are


usually located on rivers, and houses by the beach are usually expensive, “usually”


being a linguistic approximation of the given high confidence values. It should


be noted that the concept of support still applies, so while the golf course/lake


connection may be strong, there may not be many golf courses in our database


making the rule rather insignificant. A strong rule would have both high support


and high confidence (Koperski, Han and Adhikary 1998). Koperski and Han use


algorithms similar to those of Agrawal et al. to build the requisite large itemsets or


predicate sets, integrating features required by the Spatial DBMS.


Another instance of spatial data mining of interest to us is the mining of


image or raster data. Contrary to the earlier quote, spatial data mining does not


have to be on an explicit spatial database but can be performed on a large image


database containing spatial data of a different kind, often from a remote sensing


source. Koperski, Han and Adhikary (1998) say that this differs from ordinary “image


processing” in scale:


. . . data mining studies very large amounts of data . . . while image


processing usually concentrates on analysis of single or a few images.
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This kind of approach is applied when some kind of automated image analysis such


as object detection or pattern matching is needed. A famous example is the work


done by Burl et al. (1998) on recognizing volcanos on the planet Venus. Mining on


30,000+ radar images from the Magellan probe, they were able to achieve an 80%


accuracy rate with their system. The system consisted of three major components:


1. Data focusing to examine the image pixels (the building block of the images)
and their neighbors to decide on the image areas to proceed on;


2. Feature extraction to glean necessary attributes and metrics (e.g., eigenvectors)
from the found areas;


3. Classification learning which actually answers the question “volcano/not
volcano” or learns from human expert examples how to do this based on the
attributes from the last component.


This example is important because much of the spatial data coming in from field


observation (e.g., satellite radar, aerial photos, sea-floor SONAR, etc.) is indeed raw


image data without the niceties of spatial objects structures, MBRs, etc. As such,


much of the required work must be done here, at the image arrival point.


Even more applicable is the recent work of Ordonez and Omiecinski who have


done a first investigation into association mining from raster image data (1999).


Ordonez and Omiecinski are using existing image segmentation techniques, namely


Berkeley’s Blobworld system (Forsyth et al. 1997), customized preprocessing


methods - the heart of the research, and applying traditional association rule


algorithms, such at those of Agrawal et al. or others.


First the Blobworld process is applied to each image in the test image-base to


extract the various shapes so that each shape in an image now has its own blob.


The important step now it the preprocessing using similarity matching. Ordonez


and Omiecinski use the various object attribute metrics (color, shape, position, etc.)
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to calculate a similarity coefficient a given object versus any other objects, with the


weight for each metric being user definable. Objects that are similar enough are


considered to be the same object, e.g., the yellow square in image X is the same as


the yellow square in image Y . In terms of the research in this thesis, the objects


could be considered to be in the same class, and in terms of foundational association


rules, they are essentially the same item.


This basically describes what Ordonez and Omiecinski are doing. As stated in


their research:


With typical basket-market analysis, the data is usually constrained to


a [preexisting] fixed set of items that are explicitly labeled (Ordonez and


Omiecinski 1999).


No such set of items exist here; the image data domain requires the itemset to be


generated. By using similarity to constrain the shape objects to a small group, they


create a shape itemset analogous the that of a retail itemset. Having its constituent


objects so tagged, each image in the image base becomes a transaction analog,


containing not beer and chips but shapes as its items. Once this meta-transaction


base is built, neither the images or the blobs are needed any longer, except for


visualization. Traditional association rule mining can now proceed to generate rules


such as:


{ 4 } ⇒ { 2 } (0.50, 1.00)


{ 4 7 11 } ⇒ { 2 } (0.40, 1.00) (Ordonez and Omiecinski 1999)


which say that an image with a hexagon(4) will also have a triangle(2) with 100%


confidence for the first, and for the second more complex rule, that an image with a
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hexagon(4), a square(7), and a circle(11) will also contain a triangle(2), again with


100% confidence but lower support.


This whole approach by Ordonez and Omiecinski is somewhat similar to others


such as Srikant and Agrawal (1996). That is, standard association rule techniques


are designed for boolean attribute data, however we want to mine on non-boolean


data such as quantitative or image data. If a method can be found to map the


initial data into a boolean context, such as the similarity matching of Ordonez and


Omiecinski or the range mapping of Srikant and Agrawal then the techniques from


the established association rule tool box can be easily and effectively applied.







CHAPTER III


THEORY


3.1 Problem


Given a partitioned raster image, i.e., an image containing a set of discrete


objects, or several such images, we wish to extract information about the


relationships among these various objects in the image or across images. In other


words, we wish to mine association rules describing the general spatial nature of the


image components. Again, the focus here is exclusively on the direction component


of a spatial relationship. Not currently taken into account are other attributes such


as the distances between objects or the sizes of objects, whether relative to each


other or absolute in the image space. Rather, we are currently interested only in


simple rules constrained to the directions between objects. Furthermore, due to the


inherent imprecision in directional relationships, in part due to morphology, as laid


out by Bloch, we wish such rules to be fuzzy - indeed we cannot escape this fact.


To investigate such a system we will need available: an object detection scheme, a


spatial relation form, association rule form(s), including the appropriate support and


confidence metrics, or reasonable analogs thereof, and a mining algorithm.


The object detection scheme will make available objects (crisp for our purposes)


tagged with their size, location, and, most importantly for this investigation, their


class. Yet while knowing the identity of the class is necessary, what exactly said class


means is in and of itself not so important to the process but depends on the specific


domain to which the process is being applied. And while it is true that we may
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use natural numbers or alphabetic characters to denote classes, these are categorical


attributes and not ordinal attributes. Class 2 is no closer to class 1 than class 7;


class H is no closer to class G than class V . As such, we can interpret class as a


simple categorical attribute as described in Srikant and Agrawal (1996). Extracting


the relational meta-data from the objects requires what is for the most part an


implementation of Bloch’s techniques, with the output customized for our purposes.


After the meta-data has been extracted, we will apply an association rule mining


algorithm to these intermediate spatial relationship data to mine fuzzy association


rules describing the general relationships among the image components. However,


as mentioned in the Literature Review, the existing fuzzy rule mining techniques


(Kuok, Fu and Wong 1998) are designed for the general milieu of “traditional” non-


spatial databases (e.g., age, price, etc.). With that in mind we will have go back to


basics and apply a simpler algorithm to provide useful and interesting generalized


information at this stage.


Such a system will tackle some of the various unaddressed issues in the


previously discussed literature via this integration. The fuzzy spatial relation work


of Bloch usefully functions at the individual relation level, a specific object R


related to a specific object A. The proposed system will mine these relationships


to extract generalizations. The fuzzy association rules of Kuok, Fu and Wong


add fuzziness to the classic associations of Agrawal, Imielinski and Swami, but


principally apply it to ordinary non-spatial data. The proposed system will operate


in a spatial/image domain. Ordonez and Omiecinski offer a first step into image data


mining, transforming image data into traditional boolean transactions, thus enabling


the application of regular retail-style rule mining, but they mainly focus on simple


object co-occurrence, more basic than object spatial relationships, and they do not
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utilize fuzzy set theory. And while Koperski, Han and Adhikary do offer a spatial


variation of association rule mining, it does not utilize fuzzy set theory. Indeed they


cite a “(f)uzzy sets approach (1998)” as one of the many future directions of spatial


data mining. The system proposed here takes up that challenge.


3.2 Objects


We will assume that the source images are already partitioned and classified


through some means, making available to us the constituent objects tagged with


their size, location, and class. The class in question could theoretically have some


domain specific significance important to the user, but that is not relevant for this


work. We should mention here that implied in the object size and location is its


morphology. Because we are dealing with raster image data, our objects are simply


collections of pixels rather than the nested objects found in spatial databases. The


algorithms we are using will need to perform operations on these various pixels.


Therefore, we do not just want to know the location of an object, but the location


of all its constituent pixels as well which define the object’s morphology. As such


the BlobWorld (Forsyth et al. 1997) used by Ordonez and Omiecinski (1999) would


not be applicable here since objects are transformed into blobs and by definition lose


their morphological identity.


3.3 Relations


Recall that we are using Dr. Isabelle Bloch’s fuzzy spatial techniques (1999)


for 2D space applied to partitioned image data (i.e., containing discrete objects) to


produce orientation meta-data about the objects, or more specifically object pairs,


contained therein. This meta-data takes the form of fuzzy spatial relations. However,


rather than describing these fuzzy relations with single fuzzy membership values,
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there are three values per relation forming an interval and a likely average estimate.


The resultant values of Bloch’s algorithm applied to the points in the object pair are


evaluated in the forms 2.2, 2.3, and 2.4 seen on page 17 in the Literature Review.


Given these resultant values as well as the input values (direction, object IDs, etc.)


and adjunct data, namely the object classes, we can form descriptive relations about


pairs of objects and their relative position. These descriptions will be used in turn


to generate association rules. We describe the form of such relations as follows:
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Given:


O = {o | o is an object in S}, set of all objects in space.


C = {c | c is the class of o ∈ O}, set of all object class labels.


The relation:


isa(ox, ci) where ox ∈ O ∧ ci ∈ C


is a classical, crisp relation associating an object ox with a class label ci.


Dα = {((or, oq), N
or
α (oq),M


or
α (oq),


∏or


α (oq)) | (or, oq) ∈ O ×O ∧ or 6= oq}


is a fuzzy relation, D = “in direction of”, or more specifically “oq is in direction


α of or.” In contrast to typical fuzzy relation notation, we have explicitly replaced


the single membership value, µ, with three values: the pessimistic necessity, N , the


optimistic possibility, Π, and the overall mean, M . These are the same as 2.2, 2.3,


and 2.4 discussed on page 17 with R = or and A = oq in this case. They have the


property:


0.0 ≤ N ≤ M ≤ Π ≤ 1.0.


In other words, the necessity and possibility form an interval in which is found the


Mean - M ∈ [N, Π] - in short, a membership interval. According to Bloch, this


arrangement captures the inherent imprecision in the spatial relationship (1999).


For a given image-space, since we are examining the relationships between pairs


of objects, we will find such relation tuples for all 2-permutations of the image’s object
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set O. Thus, the number of such tuples is:


P (|O|, 2) =
|O|!


(|O| − 2)!
= |O| · (|O| − 1)


Note that we want permutations - not combinations since the spatial relationships


between objects are not commutative.


Furthermore, we also do not want to limit ourselves to a single α direction but


rather several primitive directions, such as right, above, left and below or


D = {0, π


2
, π,


3π


2
}


radians which can better describe the space in general. Moreover, we will eventually


want to analyze not just a single image but a set of images. This gives us a transaction


database of (|Oi| · (|Oi| − 1) · |D|) tuples for each image i, where Oi is the set of


objects for image i. For now, however, we will focus on applying our techniques to a


single image populated with several objects and thus several object pairs.


3.4 Rule Forms


To actually find rules we will need some possible rule forms to use. Additionally,


an important factor in these rules will be how the Support and Confidence, or the


fuzzy spatial analogs thereof, will be determined. Recall that in traditional binary


association rules, the support of a rule X ⇒ Y is the percentage of all tuples in the


database that contain the items XY , indicating the significance of the rule in the


database at large, while the confidence is the percentage of all tuples containing X


which also contain Y , indicating the strength of the rule itself.
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It should be noted here that, as seen above, traditional association rules take the


form of an implication, and as such many equate the term “rule” with implication.


We will adopt a broader definition of association rules to potentially include a wider


variety of logical assertions.


In the following section we explore several possibilities. We establish some rule


forms and offer some examples using hand generated data. The forms fall under two


categories which we call aggregated and traditional. We present the more radical


aggregated approach and accompanying rule form first and work towards a more


traditional form.


Figure 3.1: Sample objects with
classes


Figure 3.2: Landscape of Class Hin
direction α = 0.000 and phantom
Class G


3.4.1 Aggregated


In simplest terms association rules make generalizations about a relatively


large amount of data. They in effect aggregate the data into like chunks, i.e., the


rules. We take this concept a step further and do some aggregation before the
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explicit rule generation stage. Separate objects of like classes are aggregated into


non-contiguous pseudo-objects (or “class-objects”) before the fuzzy spatial relation


extraction stage, giving us one pseudo-object per class. Bloch’s algorithm is then


applied to these pseudo-objects as though they were normal objects (the algorithm


makes no distinction) to generate tuples. Figure 3.2 depicts a landscape generated


from Figure 3.1 through such means.


The result of this is that for any two given object classes in an image, there is


one and only one tuple describing that pairing in a given direction. In essence the


mining is done prior to or concurrent with tuple generation. As for the forms such


rules take, a possibility is:


Class-Class


∀x∀y, class(A) ∧ pixel(x) ∧ inClass(x,A) ∧ (3.1)


class(B) ∧ pixel(y) ∧ inClass(y, B)


⇒ inDirection(α, x, y) (S, C)


S = Sum(NPA, NPB)/NPObj


CN = Necessity


CM = Mean


CΠ = Possibility


Or in more natural language:
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Given any class A pixel and a any class B pixel, it follows that the class


B pixel will be located in direction α of the class A pixel with a certain


confidence and certain standing in the database.


This a fairly strict rule due to the use of any (or all or every) which holds all such


pixels to the arrangement.


One important issue here is the fact that since objects were aggregated into


class-objects, it is difficult to even talk about true objects anymore - they no longer


exist. Instead, we must talk in terms of the pixels that make up the objects, hence


the predicate pixel simply meaning “is a pixel”. So the rule part is rather simple:


given any two pixels, x and y of the classes A and B, y is in the direction α, whatever


it may be, of x. The issue then becomes the measurement of this rule, the S and C


figures (these aren’t exactly the same as traditional support and confidence, but we


keep the initials to emphasize that there is an analogous relationship).


First, we have posited a sum calculation for S, namely a ratio of the sum of


class A and B pixels to the total number of pixels in all objects (vs. total pixels


in the image), NPObj. While we have lost individual object identities, we still have


statistics about them like these. This seems to be closest to the traditional concept


of support, being similar to XY itemsets presented above. But there may be other


possibilities that might be more in line with Bloch spatial relations in which size can


have an effect on a relation.


S2 = Min(NPA, NPB)/NPObj


S3 = Max(NPA, NPB)/NPObj
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both produce smaller support values dependent on the size of the participating


classes. For example a rule might be produced with high confidence (more on this


momentarily) where one of the classes is very large in the image space, conferring high


S upon the rule. However the other class might be very tiny and thus unimportant,


at least in the given domain of discourse. As such, perhaps the cautiousness of


allowing a small class to scale down a rule is merited - at least as an option.


As for C, if confidence indicates the strength of a rule, then the fuzzy


memberships for the base tuples seem to be logical candidates for this metric.


Moreover, in contrast to the S choices above, these are presented here as three


values which should all be presented to the end user, rather than giving only one


value as the final output. Recall once again that Bloch characterizes this membership


interval as capturing the imprecision of a relation. As such, retaining all three values


(or derivatives thereof) can be viewed not as noncommittal but rather informative.


Table 3.1: Objects
id class size first


7 H 961 (31, 26)
8 H 961 (31, 110)
9 H 961 (31, 192)
10 G 961 (187, 109)
11 G 961 (188, 27)
12 F 961 (189, 190)


Table 3.2: Pseudo-Objects
id class size first


13 H 2883 ( 31, 26)
14 G 1922 (187, 109)
15 F 961 (189, 190)


Object #13 is aggregation of objects #7-9;
Object #14 is aggregation of objects #10,11;
Object #15 is aggregation of object #12;


An example using this form:
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Class-Class Example (using tables 3.2 and A.2 from Figure 3.1 )


∀x∀y, class(H) ∧ pixel(x) ∧ inClass(x,H) ∧


class(G) ∧ pixel(y) ∧ inClass(y,G)


⇒ inDirection(0.0, x, y) (S, C)


S = Sum(2883, 1922)/5766 = 4805/5766 = 83.33%


S2 = Min(2883, 1922)/5766 = 1922/5766 = 33.33%


S3 = Max(2883, 1922)/5766 = 2883/5766 = 50.00%


CN = 99.59%


CM = 99.99%


CΠ = 100.00%


In words:


Given any class Hpixel and any class Gpixel, it follows that the class


Gpixel will be located in direction 0 (i.e., to the right) of the class


Hpixel with a necessary (or minimum) confidence of 99.59% a possible


(or maximum) confidence of 100.00% and a mean confidence of 99.99%.


This is supported by 83.33% of the pixels in the database (i.e., image


space).


The advantages of this approach are that it is fast, requires little intermediate


storage, and incorporates the mining stage directly into relation extraction; rule


generations becomes a trivial reformatting of the corresponding relations. The


main disadvantage is the loss of individual object information. Another possible
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disadvantage, or at least an unresolved problem, is how to manage rule mining across


multiple images in a set. If objects are in different spaces, objects of a given class


cannot all be aggregated and then spatially related to objects not in their same space.


This could result in multiple tuples which will require a more explicit mining step


again.


So while our agglomeration technique can streamline the mining process, the


cost is a loss of individual object identity which could be a limiting factor for further


knowledge discovery.


3.4.2 Traditional


A traditional mining approach entails viewing the various object-object relations


as analogs to itemsets, though not necessarily to the degree of Ordonez and


Omiecinski (1999). These individual object relations would then be generalized into


association rules through an explicit mining stage.


One option is to use a modification of the basic form presented above:
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Object-Object form #1


∀x∀y, class(A) ∧ object(x) ∧ inClass(x,A) ∧ (3.2)


class(B) ∧ object(y) ∧ inClass(y, B)


⇒ inDirection(α, x, y) (S, C)


Sp = Sum(NPA, NPB)/NPObj


So = Sum(NOA, NOB)/NO


Ci =


∑
x∈A


∑
y∈B


(inDiri(α, x, y))


NOA + NOB


i ∈ {N, M, Π}


Cpixel = see future work


Or:


Given any class A object and a any class B object, it follows that the


class B object will be located in direction α of the class A object with a


certain confidence and certain standing in the database.


However, some things have changed. For one, we still have individual objects


(notice the object predicate) so we have the option of making statements in terms


of objects. If we need to work with pixels as in the Class-Class version, we would


require some slightly different formulae. Sp could be the same as with Class-Class but


the Cpixel series would require some additional calculation to be discussed in future


work. Recall from Section 3.4.1 we did not have to actually do such a calculation.
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Overall though, form 3.2 is the same as before except with the additional object


variant. This is because, depending on the domain, we may not be very interested


in object size, which number of pixels conveys, but simply object populations - one


object, one vote, like the senate versus the house of representatives. Also, we could


still use the minimum and maximum variants as well, but for the rest of this work we


will concentrate on the sum version since, as said earlier, it is most like the traditional


support measure. As for the min/max versions, we will be content to know that they


are available if domain specific conditions call for them and their support dampening


features.


The other major change is the determination of C. Because we have to do


explicit mining to aggregate the tuple information we must do some summations


and averaging of the fuzzy memberships. And it is essentially an average, summing


over the objects, weighted by fuzzy membership, then dividing by the number of


objects. What is still preserved is the notion of passing on the imprecision measures


by generating three such C measures as a membership interval.


An example 1 using this form:


1NOTE: The problem with this example is that because the objects in the test image are of
uniform size the two sets of S measures come out the same. This will not always be the case.
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Object-Object 1 Example (using tables 3.1 and A.1 from Figure 3.1)


∀x∀y, class(H) ∧ object(x) ∧ inClass(x,H) ∧


class(G) ∧ object(y) ∧ inClass(y,G)


⇒ inDirection(0.0, x, y) (S,C)


Sp = Sum(2883, 1922)/5766 = 4805/5766 = 83.33%


So = Sum(3, 2)/6 = 5/6 = 83.33%


CN = 4.5438/6 = 75.73%


CM = 4.8215/6 = 80.36%


CΠ = 5.0727/6 = 84.55%


Or:


Given any class Hobject and a any class Gobject, it follows that the class


Hobject will be located in direction 0.0 (i.e., to the right) of the class


Gobject with a necessary (or minimum) confidence of 75.73% a possible


(or maximum) confidence of 84.55% and a mean confidence of 80.36%.


This is supported by 83.33% of the objects in the database (i.e., image


space).


The major advantage here is we now have access to the objects again so we can


potentially say more about a given rule, or we could relate an object to more than


one other object in more than one direction at a time. The disadvantages are more


processing time, and more storage. Also notice there is the unresolved problem of
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a good C measure in pixel mode. Unlike the earlier example, there is no longer a


single value (or three values) to simply use - one must be constructed.


The straight Object-Object tuple based mining also offers the possibility of


additional rule forms such as the one given here:


Object-Object form #2


∀x∃y, class(A) ∧ object(x) ∧ inClass(x,A) ∧ (3.3)


class(B) ∧ object(y) ∧ inClass(y, B) ∧


inDirection(α, x, y) (S, C)


So = Sum(NOA, NOB)/NO


Sp = Sum(NPA, NPB)/NPObj


Ci =


∑
x∈A


max
y∈B


(inDiri(α, x, y))


NOA


i ∈ {N,M, Π}


Cpixel = see future work


Or:


Given any class A object, we assert that there exists some class B object


located in direction α of the class A object with a certain confidence and


certain standing in the database.


The obvious difference is that this rule form is less demanding being existential


rather than universal on the other object in question. That is to say, we are not


concerned with every object in relation to the reference object - just the best one.
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The other difference along with that is the absence of the implication in favor of a


simple conjunction.


The existential rule also requires some different methods for finding the S and


C measures. We could try to use one of the possible forms from the previous rule


forms as shown in So,p above, but in this case the NOB is troubling. If we only need


one instance of class B to exist, we should not count all the B objects, since this


would be closer to standard support. We could go to the trouble of holding out the


best y that exists per x and use just those to create a measure not presented above


but that seems difficult. Since the focus is really on all A objects and whether they


have a B object, maybe all that should really be counted is the A objects as in:


S2o = NOA/NO


S2p = NPA/NPObj.


In some sense it is that last approach we adopt for the C measures, placing NOA in


the denominator. The numerator is similar to that of the previous rule form except


that, because of the existential form, it requires only the max, i.e., the best that


exists, membership value of the pair relations in question. However we still pass on


the three value membership interval as before.


An example using this form:
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Object-Object 2 Example (using tables 3.1 and A.1 from Figure 3.1)


∀x∃y, class(H) ∧ object(x) ∧ inClass(x,H) ∧


class(G) ∧ object(y) ∧ inClass(y, (G) ∧


inDirection(0.0, x, y) (S, C)


So = Sum(3, 2)/6 = 5/6 = 83.33%


Sp = Sum(2883, 1922)/5766 = 4805/5766 = 83.33%


S2o = 3/6 = 50.00%


S2p = 2883/5766 = 50.00%


CN = 2.6805/3 = 89.35%


CM = 2.7588/3 = 91.96%


CΠ = 2.8233/3 = 94.11%


Or:


Given any class Hobject, we assert that there exists some class Gobject


located in direction 0.0 (i.e., to the right) of the class Hobject with a


necessary (or minimum) confidence of 89.35% a possible (or maximum)


confidence of 94.11% and a mean confidence of 91.96%. This is supported


by 83.33% of the objects in the database (i.e., image space) based on all


objects in the two classes.
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3.4.3 Previous Work


In general, the resultant rules generated with these forms are similar to those


discussed by Kuok, Fu and Wong (1998). Their work establishes a convenient


framework for interpreting directional attributes. Recall from Section 2.3, page 25


that they describe a set of fuzzy sets


Fik = {f 1
ik
, f 2


ik
, f 3


ik
, fn


ik
}


that are associated with an attribute ik in the set of attributes I. In our case, the


set D of primitive directions represents a partitioning of the attribute direction aka


Dα into such fuzzy sets


FDα = {f 1
Dα


, f 2
Dα


, f 3
Dα


, f 4
Dα
} = {Right, Above, Left, Below}


The direction field of ordered pair of objects will have some degree of membership


in each of these four fuzzy sets. Such an arrangement is visualized in Figure 3.3.


For the sake of consistency, one could also view the isa(objectx, classi) relation


this way with sets for the class categorical attribute:


Fclass = {f 1
class, f


2
class, . . . , fn


class} where n = |C|, the number of classes.


Of course, isa() is a classical relation so the above actually represents the crisp set


specialization of a fuzzy set where membership is in {0, 1} rather than in [0, 1]. This


leads to a slight difference in form. For a given tuple, the class attribute can have full


membership in one and only one of these sets, e.g., Object12 cannot be in ClassH
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Figure 3.3: Primitive direction fuzzy sets


AND ClassM. Thus there is never more than one candidate for an objects class


unlike fuzzy direction.


3.4.4 Mining


Moving from the relation forms to the above rule forms requires some sort


of mining algorithm. In some sense, the algorithms used here have already been


presented in the guise of the S and C metrics and their formulae, since for the


purposes of this particular investigation, the main task of the mining stage is


calculation of these figures. The Class-Class form in 3.2 requires no mining at all


but merely reformatting of the aggregate relations into the rule form with the S


and C values pulled directly from the relation and object lists. The Object-Object


forms on the other hand are not pre-aggregated and thus require something more


like a traditional mining algorithm to make our generalized association rules. That
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said, this preliminary investigation is looking at very simple small rules so a highly


optimized miner with high-level pruning capabilities is not used. Moreover, due to


this basic nature of the rules, their skeletal forms are already known; a reference


class, some other class, and a compass point uniquely determine a simple rule for a


given form (such a combination can occur for each form used). Based on this, the


mining algorithm collects the relevant tuples, i.e., those of like class-class-dir, and


using their fuzzy metrics and general statistics from all the relations in an image or


images, aka the relation base, applies the formulae presented in forms 3.2, 3.2, and


3.4 to calculate the proper S and C values. Those data can then be formatted to


the form specifications and presented to the user as basic spatial associations.







CHAPTER IV


EXPERIMENTAL RESULTS


To test the theories given in Chapter III a series of experiments were run


demonstrating the possibilities of basic fuzzy spatial association rules. A small


system was built and run on SunOS and Linux/Intel platforms. We were fortunate


to be able to make use of parallelism via MPI on a Linux cluster which sped up the


test runs with minimal additional effort. We generated several data sets for testing:


a few hand constructed for preliminary testing, most programmatically generated by


a custom synthetic data generator, but also a real world example using categorized


seafloor data from another project. Below we present some details about the test


platform and its components, the data used for testing, and results of those tests.


4.1 Test Platform


The main components of our test system are the Fuzzy Spatial Relation


Extractor (FSRE), the Rule Miner, and a Synthetic Data Generator (SDG). The


first two are discussed below while the SDG is discussed in Section 4.4. We also


make extensive use of an external application called mpiShell, which was developed


by Bruce Wooley (2000), to facilitate parallelism. It is discussed in Section 4.3.


The main component is the FSRE which, as the name implies, extracts


fuzzy spatial relations from classified raster image data. It is a custom object-


oriented C++ implementation of Bloch’s landscape approximation algorithm or


propagation algorithm (1999) for 2D crisp objects. This is a greedy algorithm that
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dynamically bypasses much of the calculation of vector angles and generates an


approximate landscape that differs very little from an exhaustively calculated one,


while benefitting from a potential 20× increase in speed according to some of Bloch’s


tests (1999). The FSRE iterates over all the shape objects treating each one in turn


as a reference object and approximating the landscape for the reference object for


each specified direction. The intersection of every other shape object with each


landscape is then isolated “cookie cutter” style and the membership interval of the


relation is calculated to arrive at the fuzzy spatial relation. As mentioned earlier, an


object aggregation capability is built into the FSRE to offer the style of mining from


Section 3.4.1. To keep the memory footprint low, only one landscape is allocated at


any given time. The output is a table of fuzzy spatial relation meta-data suitable for


mining. One could also consider the object detector to be a component, but since


object detection is not the focus of this work, a very simple object detector has been


folded into the FSRE and runs as a preprocessing stage of that program.


The RuleMiner is a Perl script that assembles the relations generated with FSRE


into our proposed rule forms. It is a basic implementation of the mining approach


detailed in Section 3.4.4. It will autodetect the relation source, e.g., Class-Class


aggregated vs. Object-Object, and in the case of the former will drop into a simple


formatting mode to change aggregate relations directly in associations. Otherwise it


will gather relations with the same class-class-direction fingerprint and derive the S


and C metrics.


4.2 Complexity


Recall from section 3.3 on page 38, we are extracting s · (s − 1) tuples (every


shape object related to every other shape object) and we are doing it for d directions.
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This yields O(d · s2) time complexity. However, the most computationally expensive


step is landscape generation. We only have to do landscape generation once per


object per direction so that is actually O(d · s). Since d is typically a small constant,


e.g., d = 4, the complexity is O(s).


According to Bloch (1999), the propagation landscape generation algorithm has


a complexity of O((1 + 2nV )N) or O(N · nV ) where N is the number of pixels in


the image and nV is the neighborhood of each point. If we always use a typical 2D


neighborhood of 8, then this reduces to O(N). Relation extraction for a given object


A is linear, O(nA) where nA is the number of points in A.


From this we can say that for a given reference object, generating the landscape


and finding all the relations in one direction costs O(N +s ·nA), the O(s) being taken


from above. This assumes that all the objects are size nA which may not always be


the case. However, since we are doing this for multiple objects, we could substitute


for nA the mean object size, mA. Doing this for all reference objects results in


O(s(N + s ·mA)). Either way, we could say that s ·mA (or equally the sum of all nA


pixel counts over all s shapes) is simply the total number of object pixels less those


of the reference object, NO−nR, giving us O(s(N +(NO−nR))) or O(s(N +NO)). If


our image space is totally populated with objects, i.e., almost all pixels are in objects


with little or no void (classless) pixels, then NO approaches N . In any case, NO ≤ N


always holds. This gives us O(s(N + N)) or O(sN), holding d and nV constant at 4


and 8 respectively. In other words, relation extraction is on the order of the number


of shape objects times the number of pixels in the image space.


As for the actual miner, it is rather simple. We simply collect all the like


relations, i.e. those of matching alpha, and classes and calculate the association.


This can actually be done in linear O(R) time where R is the number of relations.
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However, this is understating the true complexity since the algorithm implementation


requires the input to be already sorted in memory, so in reality we can only get


O(RlogR). The space requirement is still O(R), since in the current implementation,


we keep the full relation table in memory.


4.3 Parallelism


The approximation of a landscape for a given reference object (or reference


pseudo-object) R is completely independent of any other object. The subsequent


relation extraction from that landscape is dependent on the availability of other


objects (with which R is related), but it is still independent of the other landscapes.


In other words, the analysis of reference object R with all other objects in direction


D can be viewed as an independent procedure. This means each R,D pair


can be potentially assigned to a different CPU without concern about further


communication. This is embarrassingly parallel. Usually, implementing for parallel


processing using the Message Passing Interface (MPI) standard can be a daunting


prospect, since the function calls and flow of control can be quite complex. An


embarrassingly parallel problem is much less so since internodal communication


is minimal. In this case, such implementation was further facilitated by utilizing


the services of the mpiShell, an MPI wrapper program by Bruce Wooley (2000).


The mpiShell obviated the need for extensive changes in the FSRE implementation,


instead requiring only the addition of MPI size and rank parameters. These allow a


given FSRE process to use mod and div operations to decide which of the pool of


shape objects to work on and which to leave to other nodes. The mpiShell abstracts


away the various MPI scatters, gathers, broadcasts, etc., and greatly accelerates the


development cycle. With this in place, it became rather simple to use 8, 12, 16,
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or more CPUs from the Linux cluster for a test image and greatly enabled us to


complete more experiments in a shorter period of wall clock time. Actual speedup


achieved was far from linear with a 16 CPU job generally finishing about 4 times


as fast a single CPU run on the same machines. But that timing encompasses the


entire run including:


• copying the image data across the network,


• object detection which must be run on all CPUs for the whole image,


• copying and concatenating all the results back across the network.


Redundant object detection and more importantly file operations can be detrimental


to the timing. That said, 2m30s is a lot less waiting time than 13m15s as seen in


time tests, especially considering the minimal development time required to take


advantage of mpiShell’s services.


4.4 Test Data and Results


4.4.1 Simple Hand-Constructed Data


We began by running the system on small simple hand-constructed images with


a few objects of a few known classes in readily apparent spatial configurations. One


such image containing six objects (on an empty classless background) in three classes


was presented as Figure 3.1. Some sample rules were also presented.


In Figure 4.1 we present another simple example still with three classes but


now with slightly more objects. Certain aspects of the spatial arrangement are very


apparent to the human eye. We expect strong rules in the left and right directions. In


order to present an overall picture of the number of rules generated and the support


and confidence for those rules, we have generated a scatter plot for the rules where


the x-axis is support and the y-axis is confidence. High support and confidence rules


are in the upper right. This is what we mean by “plotting the rules” - plotting the
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Figure 4.1: A hand-constructed three-class image


metrics of the rules. We have found this to be an effective way of visualizing and


evaluating the large numbers of spatial association rules produced. The graph for


rules about Figure 4.1 is shown in Figure 4.2. While we have our three values to


use for confidence, plotting all three of them for all rules would be difficult to read,


especially as we generate more rules in larger images, so for these plots we have chosen


to show only CM , the mean value within the interval. There are two main point sets,


one for the more rigorous Universal rule set (form 3.2) and another for the Existential


(3.4). Because the Universal rules, whose form starts ∀x∀y, are more rigorous in that


they require all A to be related to all R in a certain direction, their plots tend to


cluster at the bottom of the graphs while the Existential rules, ∀x∃y, are more


lenient requiring only on A class object and so can achieve higher confidence values.


Figure 4.2 exhibits this characteristic as well. This image particularly emphasizes
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Figure 4.2: Graph of rule metrics, S & CM for rule mined from Figure 4.1. Rules
are in two series corresponding to the two forms used: Universal for form 3.2 and
Existential for form 3.4.
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the Existential rules; the image shows objects with “existing” companion objects and


several existential rules have scored well on the graph. A rule one would expect, that


the objects of the class visualized in light grey (call it F) have black class objects


(call them class G) to their right, i.e.,


∀x∃y, class(F) ∧ object(x) ∧ inClass(x,F) ∧


class(G) ∧ object(y) ∧ inClass(y,G) ∧


inDirection(0.000, x, y)(85.71, 86.15 ≤ 91.69 ≤ 99.66),


does score well at the second plot down in the upper-right of graph at CM = 91.69.


However this is not the highest scoring rule. That one is actually the opposite, i.e.,


reference class Gobjects with class Fobjects to the left, i.e.,


∀x∃y, class(G) ∧ object(x) ∧ inClass(x,G) ∧


class(F) ∧ object(y) ∧ inClass(y,F) ∧


inDirection(π, x, y)(85.71, 100.00 ≤ 100.00 ≤ 100.00),


which scores CM = 100. While every reference object in Gthere does indeed exist


another object in F , the same cannot be said for the other direction. It is peculiarities


like these that the rule miner can extract.


4.4.2 Synthetic Data


The hand-constructed images can only demonstrate so much and constructing


sufficiently populated images is rather tedious. Therefore we constructed a Synthetic


Data Generator (SDG) to produce additional images. C++-style pseudocode of the


algorithm is presented in Figure 4.3. The SDG operates on the concept of bias,
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specifically directional bias. The user specifies two classes, reference class (R) and


other class (A) out of some total number of classes (C), a direction between them (α)


and a percentage bias (b) for this direction. While the code offered in Figure 4.3 is


for the direction α = 0 (right), the only difference for the other three directions is the


order of grid traversal (lines 16 and 17) which effectively controls direction. Objects


are randomly generated on a grid of user-defined size, with each class, including R


and A having an equal probability 1/C of appearing at a grid point. However when


an object of class R appears, the bias goes into effect and the next object in the


designated direction has a biased probability b/100 of being in class A, otherwise it


becomes one of the other classes (including R) with probability (100− b)/100. Each


individual remaining class accounts for


100− b


100
· 1


C − 1
=


100− b


100 ∗ (C − 1)


of total probability.


An additional option called “Extended” is offered. When this is activated, the


bias remains in full effect from the first occurrence of R until the edge of the image in


the specified direction. Without it, the bias is only in effect for the object immediately


after the R class object. This option should cause differences in overall support since


more class A objects should be generated in extended mode. This could also have


effects on the confidence interval of Existential (form 3.4) rules versus Universal (form


3.2) rules, since the additional class A objects could boost the Universal figures.


We also incorporated another algorithm called “Half” which produces spatial


relations more readily visible to the human observer. Pseudocode is offered in Figure


4.4. When activated, A objects are biased to one half of the image and disallowed


from the other half in the specified direction. This is a much simpler algorithm since
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// C++ pseudocode algorithm for generating a biased synthetic image
// in the right or east direction. The other three directions
// (Left, Above, Below) are analogous, the main difference being
// the order of grid traversal
void SDGenerator::generate Right()
{


int R class; // Our reference class
int A class; // Our other “biased” class
int numClasses; // total number of classes including R & A
int bias; // Our probability %age in [1. .100] 10


int biasRoll; // Roll of a 100 sided die for bias percentage
int classRoll; // Roll for chosing classes
bool useBias; // Flag indicating Reference class has been seen


// and therefore bias is in effect
useBias = false;
for(int y = 0; y < rows; y++) { // Generate from Top to Bottom


for(int x = 0; x < cols; x++) { // Generate from Left to Right
if(useBias) {


biasRoll = Roll a 100 sided die();
if(biasRoll <= bias) // Did it fall within influence of bias? 20


classRoll = A class; // . . .then force our biased A class
else // Pick a class OTHER than A class


// Probability of OTHER classes is (100-bias)/100*(numClasses-1)
classRoll = Roll a numClasses−1 sided die(); // no A class


} else // no bias
// Probability of EACH class is 1/numClasses
classRoll = Roll a numClasses sided die(); // Pick any class


image[x][y] = classRoll; // Put our chosen class in the grid
30


if(classRoll == R class) useBias = true; // Flag if we just saw R
else if(NOT EXTENDED MODE) useBias = false; // reset if no extension
// ELSE we ARE in EXTENDED MODE and the bias can persist for the
// duration of this row, provided it is already set


}
useBias = false; // reset for next row - extended doesn’t matter here


}
}


Figure 4.3: Synthetic algorithm pseudocode
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// C++ pseudocode algorithm for generating a biased synthetic image
// in the right or east direction, using image half method. The other three
// directions (Left, Above, Below) are analogous, the main difference being
// the order of grid traversal
void SDGenerator::generateHalf Right()
{


int R class; // Our reference class
int A class; // Our other “biased” class
int numClasses; // total number of classes including R & A
int bias; // Our probability %age in [1. .100] 10


int biasRoll; // Roll of a 100 sided die for bias percentage
int classRoll; // Roll for chosing classes


// Generate from Left to Right
// — Generate left half first - random
for(int x=0; x < cols/2; x++) // Generate from Left to midpoint


for(int y=0; y < rows; y++) // Generate from Top to Bottom
image[x][y] = Roll a numClasses−1 sided die(); // excludes A class


// — Generate right half - A class biased 20


for(int x=cols/2; x < cols; x++) // Generate from midpoint to Right
for(int y=0; y < rows; y++) // Generate from Top to Bottom
{


biasRoll = Roll a 100 sided die();
if(biasRoll <= bias) // Did it fall within influence of bias?


classRoll = A class; // . . .then force our biased A class
else // Pick a class OTHER than A class


// Probability of OTHER classes is (100-bias)/100*(numClasses-1)
classRoll = Roll a numClasses−1 sided die(); // excludes A class


30


image[x][y] = classRoll;
}


}


Figure 4.4: Synthetic half algorithm pseudocode
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bias is not based on the class went before but simply where in the image we are, i.e.,


what half. The biased roll of b/100 is continuously applied in that half of the image.


Again the remaining classed each account for


100− b


100
· 1


C − 1
=


100− b


100 ∗ (C − 1)


of total probability in that half. In the other half, A is disallowed and the other


classes each get probability 1/(C − 1). In this case, R is not a factor; rather this is


a demonstration built around A. It is easy to see how this should bias the resultant


rules, especially the Universal form, when objects are positioned in space with more


stringent conditions.


The goal of the SDG experiments is to see if the FSRE/RuleMiner combination


identifies rules that reflect the specified biases. There are several complicating factors


when analyzing the results of these experiments.


1. Small Number Effect : The bias is simply a probability and not a strict
proportion. An input of 95% does not guarantee a precise proportion of 95%
class R’s in direction α of class A’s, and thus rules of exact 95% confidence.
Since the numbers of objects in these experiments is relatively small (64), the
Law of Large Numbers does not come into play, and the results vary from run
to run.


2. Edge Effect : Also contributing is the problem of image edges. Say we have
an class R object on the right edge of our image and we are investigating the
“right of” relationship. This object can never have such a relation with other
objects.


3. Bias Side Effects : Because these are images of several objects of several classes
(say six), there is the high potential for spillover. This term refers to the
tendency for a specified bias to influence class relationships other than those
requested via the SDG - an unavoidable effect in a multi-class image.


(a) Co-directional Effect : In one kind of side effect, demonstrated in Figure
4.5, a user-specified R class object X may have a user-specified A class
object Y to its right which is the desired effect. But another unspecified
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α=0
RX AYBQ


Figure 4.5: Co-directional example: Object AY is in direction α = 0 of RX - and of
BQ as well.


object Q of class B to the left of the first object X also has object Y to its
right, emphasized with the dotted line. This does not necessarily interfere
with the XY relationship, but it does produce the unintended side-effect
of a QY relationship, and thus a more confident rule on QY (or rather
classes BA).


(b) Population Effect : This spillover extends to direction as well. By biasing
the generation of the A class we are increasing its overall population, and
thus support, in the image. It is inevitable that there will be several R
objects in directions other than the specified one thus boosting rules in
that direction. Again these are unspecified side effects.


(c) Counter-bias Effect : The bias does not prevent the existence of
relationships counter to the bias. That is, asking for a 90% “right


A3 R1 A2
α=0


Figure 4.6: Counter-bias example: Object A3 is not in direction α = 0 of R1


of” bias between two classes, R and A in no way prevents the occurrence
of “left of” relations between those classes. An example is depicted in
Figure 4.6. Object A2 is in specified direction α = 0 of R1 - but A3 is
not. This is a perfectly valid arrangement while contrary to the requested
bias. This can downgrade rule confidence, mainly with the Universal rule
forms, because the opposing direction has low fuzzy membership, and by
extension, confidence, in the specified direction fuzzy set.


These complicating factors must be considered when evaluating results. Being


aware of these caveats, mainly that the bias is not hard and fast, we can still use the


SDG to create synthetic test data.
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For our tests we generally use 256 × 256 images with 32 × 32 pixel objects for


a total of 8× 8 = 64 objects. For most of our images, we consistently use six classes


and a direction of α = 0 with the same classes, which we will call Gand H, chosen


as our biased reference class R and other class A respectively.1 These classes are


consistently visualized as the same colors across examples. Having adopted those


specifications, several sets of synthetic images were examined with the FSRE/Miner.


The following is a representative sample of those tests.


Figure 4.7: A randomly generated, i.e., no bias, six-class image


First we show an image that is not a synthetic dataset per se, at least not a


biased one. Figure 4.7 is a simple random image with no biased direction or classes.


1We are using R and A in the general sense of Reference and Other class - that is, as variables
in our system. We are using Gand Has specific instances of these in our particular examples, i.e.,
as constants. So R = G and A = H.
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Figure 4.8: Scatter plot of rule metrics for Figure 4.7, a random biasless image. As
before, there are two plot series, one for each of the rule forms we are focusing on.
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The results of rule mining are plotted in Figure 4.8 with support on the x-axis and


confidence on the y-axis. Again we have chosen the CM value for graphing and


have two point sets. Most of these random rules cluster in the relatively low 30-40%


support range. This biasless sample establishes a basis for comparison for our biased


samples below.


Figure 4.9: Image generated with
specifications 90% extended bias,
R = G and A = H


Figure 4.10: Isolation of classes
Gand Hfrom Figure 4.9 with the
other classes changed to empty
space to give a better of view of
their relationship.


Figure 4.9 was generated with a high bias of 90%, between the two classes with


the added option of bias extension activated. The results of this can be easily seen


when the classes in question are isolated in Figure 4.10. In this respect the bias has


performed closer to 100% with the A class generated fully from R objects rightward


to the edge. The class A objects not to the right of an R class object, such as those


on the bottom, were randomly generated with the general object population.
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Figure 4.11: Scatter plot of rule metrics for Figure 4.9. In addition to a full plot
series for each of the two rule forms, the rule plot points for both forms corresponding
to the SDG specifications have been selected out as separate respective series and
labeled with S and CM .
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Even with this high extended biased performance, the rules we are focused on,


identified by the specified R,A,Right signature, i.e., the parameters used as SDG


input, did not achieve maximum confidence and this can be traced to item #2 of


the caveats mentioned above - the Edge Effect. The reference class object in the


bottom right corner has no A class object to the right but it still plays a role in rule


confidence calculation. Consequently only six of the seven R objects fulfill the rule.


6/7 ≈ 86% which is close to the CM value of 88 in the Existential rule.


The Universal rule is helped by the extended bias which can make it more likely


that all A class objects will be to the right of R class objects. However, the Universal


rule is hindered by the existence of A objects on the wrong side, i.e., to the left as was


discussed in item #3c above - the Counter-bias Effect. But considering the Universal


form is a more rigorous rule it did turn out relatively strong at CM = 44%.


One interesting effect to notice is the banding seen in Figure 4.11. This is


attributable to the side-effects mentioned in items #3b, the Population Effect, and


#3a,. Co-directional Effect. The high bias and more importantly the extension


option have boosted the overall population of class A objects in the image. This in


turn has elevated the support of all rules that include class A, either as reference


objects or other objects because for these experiments we compute it as a sum. The


Co-directional Effect. manifests itself in the rules with confidences even higher that


our focus rule. Class objects in these rules generally occur further to the left or


possibly below the other classes and thus get a better “view” of the class A objects


in their landscapes, thereby boosting their C values. Also some of these classes do


not suffer from edges and that detriment to their rule metrics. Rules with class


A as the reference class can benefit from their own high population for rules going
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in the other directions (left and down) but do suffer from its edge objects in those


directions.


Figure 4.12: Image generated with
specifications 80% extended bias,
R = G and A = H


Figure 4.13: Isolation of classes
Gand Hfrom Figure 4.12 with the
other classes changed to empty
space to give a better of view of
their relationship.


Figure 4.12 also derives from a high extended bias, although not as high as the


last example, using 80%. The isolated visualization in Figure 4.13 shows this with


not all spaces to the right of our R objects being populated with A objects, most


notably on the lower three rows. Ironically, this lower bias example has resulted in


higher confidence rules, with both the stricter Universal form and the more lenient


Existential form occurring at the top of their sets, the Existential one scoring CM =


100%. This is due to the fact that the R class has no object on the right edge to bring


it down and that the Existential rule form only looks for the best A class relation for


any given R object. The A class objects on the very left do not trouble the Existential


form but are rejected. The extreme left A objects do negatively affect the Universal
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Figure 4.14: Scatter plot of rule metrics for Figure 4.12. In addition to a full plot
series for each of the two rule forms, the rule plot points for both forms corresponding
to the SDG parameters have been selected out as separate respective series and
labeled with their S and CM measures.
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rule, and keep it from scoring as high as it could have, but the extended occurrence


of A objects on the right do boost it and it still scores very well at CM ≈ 54%.


In general, this also illustrates side-effect #1, the Small Number Effect. That is, at


these sizes, the lower 80% bias input here will not always manifest itself in worse


rule output versus the higher 90% bias in the previous example. Overall this Figure


4.14 again displays the banding caused by the extended bias.


Figure 4.15: Image generated with
specifications 95% bias,R = G and
A = H


Figure 4.16: Isolation of classes
Gand Hfrom Figure 4.15 with the
other classes changed to empty
space to give a better of view of
their relationship.


Figure 4.15 displays a very high bias of 95% but in this case the extended


option has been deactivated; only objects immediately to the right of R class objects


are biased towards class A, then the bias resets as generation proceeds. Thus the


banding formed from extension has vanished from the graph in Figure 4.17 with


support ending up lower across the board and clustering together. Also because of


this the Universal rule of our specified focus (G, H, Right) is no longer distinguished
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Figure 4.17: Scatter plot of rule metrics for Figure 4.15. In addition to a full plot
series for each of the two rule forms, the rule plot points for both forms corresponding
to the SDG parameters have been selected out as separate respective series and
labeled with their S and CM measures.
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in its plot set; there is no high population to the right to boost it. In contrast,


the Existential rule in question is still quite high in support and confidence, lowered


mainly by the upper right edge class object. This example demonstrates the different


demands of these two forms.


Figure 4.18: Image
generated with 85% bias
for class Iin the right
(α = 0) half


Figure 4.19: Isolated
classes J and Ifrom
Figure 4.18


Figure 4.20: Isolated
classes Hand Ifrom
Figure 4.18


In the final synthetic example of Figure 4.18 we have activated the “Half”


feature which, rather than biasing the occurrence of the A objects relative to R


objects, biases them in an absolute half of the image, in this case the right half with


a bias of 80%. Since the bias is with respect to a space, there is no particular chosen


reference class. Furthermore, this arrangement demonstrates a situation which the


Universal rule form is suited to since all A objects are more likely to be in the


chosen direction of R classes. We should see increases using several reference classes.


However, while the Existential rules using that A class to the right should generally


all achieve 100% confidence as seen in the Figure 4.21 graph, not all Universal rules


will reach the same level. We have extracted two class pairs in Figures 4.19 and


4.20 to show this. The J I rule has lower support than the HI one because there
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are slightly fewer J objects than class H. But more interestingly, J I rule has high


confidence than the HI one, though both have high confidences than was seen in


the previous examples. This is because of the reference object positions and the


nature of landscapes. Recall that landscapes which visualize fuzzy spatial relation


membership have a conical or spotlight nature with membership higher in the center


of the cone and lower near the edges (see Figure 2.2). Because the J objects are


nearer the center of the image, more I can fall in the higher membership portions


of the landscape and, just as importantly, fewer will fall in the lower membership


areas. In this way, the I objects as a group are more to the right of J objects than


are of H objects. This is basically what the rule tells us through its CM measure.
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Figure 4.21: Scatter plot of rule metrics for Figure 4.18. In this case we have
generated two additional subseries per each full series to illustrate those particular
rules.
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4.4.3 Real World Example


For a real world test we ran the system on some selected classified seafloor


SONAR data from the OKEANOS project (Bridges et al. 1998), the spatial


arrangement of which was unknown. One such images is shown in Figure 4.22.


This image represents a classified sonar image. Before the test the exact spatial


arrangement of the class regions is not known.


Figure 4.22: Classified seafloor image
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This image was run through the system and the gathered rules have been plotted


in Figure 4.23. Again we chose the mean C measure for display. While there are
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Figure 4.23: Scatter plot of rule metrics for Figure 4.22


several rules that could be useful here, one in particular looks promising from the


graph and that is the Existential (marked *) rule in the top-right of the plot. This


plot corresponds to rule #148,


∀x∃y, class(K) ∧ object(x) ∧ inClass(x,K) ∧


class(L) ∧ object(y) ∧ inClass(y,L) ∧


inDirection(
3π


2
, x, y)(63.43, 94.50 ≤ 96.43 ≤ 100.00),


which states that objects of class Kwill have some object of class Lbelow them with a


very high confidence interval and a high support sum as well. In Figure 4.24 we have
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isolated the two relevant classes and set the rest to void, with class K, the reference


class, visualized in a medium grey and class L, the other class, visualized in white


for better contrast. It now becomes more apparent, especially on the left side, that


the rule does accurately describe these object classes in the image. Moreover, while


distance is currently not taken into account, the corresponding objects would satisfy


such a test as well since they are almost always immediately touching.


Figure 4.24: Isolated classes from seafloor image
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This shows that a fuzzy spatial rule mining system such as this one does have


potential usefulness in applications to real world data to discover hitherto unknown


associations.







CHAPTER V


CONCLUSION


5.1 Summary


We have shown that the field of spatial rule mining, particularly fuzzy spatial


rule mining, is still in its youth and ripe for new development especially regarding


spatial positioning rules. A literature review was done in Chapter 2 in several related


subfields to reviewing the current state of the science. Although there is a wealth


of research in the area of image analysis, the application of newer data mining


techniques, such as association rule mining, established in 1993 by Agrawal et al.,


to image data is relatively unexplored. Work has been done in spatial databases, or


object space, as noted by Koperski, Adhikary and Han (1996) and preliminary forays


into the image domain have been done by the likes of Ordonez and Omiecinski (1999).


Likewise Srikant and Agrawal (1995) and others have extended the foundational


association rules of Agrawal, Imielinski and Swami (1993), and Kuok, Fu and Wong


(1998) have added fuzzy set theory, but only as applied to conventional data - not to


image space. In an attempt to fill in this gap, we presented a theoretical framework


for fuzzyspatial association rule mining.


We have adapted the techniques of Bloch to transform images into intermediate


meta-data, a little like what Ordonez and Omiecinski do, except that where the


concern of Ordonez and Omiecinski is simple object co-occurrence, we are exploring


the more complex relationship of spatial arrangement. We can then mine rules from


the meta-data describing the general arrangement of classified objects in the image
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space. Just as with Kuok, Fu and Wong, a key is defining rule forms that will


produce useful and interesting rules, and we offer rule forms somewhat like theirs


using a set of fuzzy sets. In our case the fuzzy sets describe fuzzy directional relations


between pairs of objects. We constructed two main rule forms for generalizing object


relations: one which utilizes the logic of the existential form which attempts to


find the best relationships between class and a more rigorous one which enforces a


universal logic, i.e., one that all object relations must satisfy. We also offered a more


radical albeit more limited rule form that operates at the class level rather than the


object level by making use of pre-mining object aggregations. Vital to these rule


forms are the measures of confidence and support which require a departure from


the methods of Kuok, Fu and Wong, which did not suit our needs. We adopted the


fuzzy membership interval of Bloch, and figures derived thereof as confidence. For


support, object population sums were used.


We conducted a series of experiments to demonstrate the effectiveness of our


rule forms and the properties they display. The experiments were run mainly on


synthetic data generator by a custom program designed expressly for that purpose.


The program produced images with a bias for specific class objects in specific


directions and specific proportions. In essence the images were “loaded” and it


was the system’s job to find with what they were loaded. The experiments showed


that the rule forms could generate useful rules that detected the planted relationships


fairly reasonably. The two forms’ performance varied on different types of images


highlighting the distinction between the forms themselves. We also noted where the


rule forms could stumble and offered reasons and caveats for this. A final test was


run on a real world classified SONAR image with unknown relationships to see what


could be extracted. A particularly good rule was mined and found to be accurate and
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interesting, demonstrating the potential for such a system’s applicability to unknown


real-world data.


This investigation presented one possible preliminary framework for effectively


analyzing spatial relationships in raster image data. Such a system could be used to


mine useful and interesting fuzzy spatial association rules. Possible future avenues


of exploration in this discipline based on this investigation are presented below.


5.2 Future Work


The above forms are not an exhaustive enumeration of all possible forms.


The traditional object-object relation model would appear to offer several more


possibilities. For example, in the forms given we generally only deal with two classes


at a time, but since an object occurs several times in the table in relation to other


objects of several classes, we could create more complex forms involving multiple


classes, e.g., something to the effect of “Objects of class A have objects of class B


OR class C to their left” or “Objects of class A are found to the right of class B AND


below class C objects”. We can check a given object to see if it conforms to such


multiple conditions. The latter example also brings to mind an additional extension


- that of considering multiple directions in a rule. The basic form of Kuok, Fu and


Wong only allows for one fuzzy set per attribute. To work around this, instead of


viewing direction as one attribute with four associated fuzzy sets, we could view


it as four attributes Dαz each with its own single fuzzy set in which it has some


degree of membership. This would allow the attribute set Y to potentially contain


several directional attributes simultaneously and give a rule taking them all into


account. Such combination might allow the analysis of intermediate directions such


as π/4 or perhaps more exotic object arrangements such as the case where an object
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is completely surrounded by another in the form of a ring. Bloch mentions the


possibility of complex relationship derivation from the four primitive relationships


(1999). The same approach could possibly yield more complex rules as well.


There is also the potential of the membership interval which became the


confidence interval. The most likely candidate for use in rule mining, at least initially,


is the mean, M , which is most akin to a single membership degree, being an average


of such values and thus the one we have used in presenting our examples. However,


since we do generate the other two values which form the membership range of the


spatial relation, they do have meaning and thus could be useful for mining. These


could be split off to form sub-attributes with their own analogous fuzzy sets in the


style of Kuok, Fu and Wong (1998):


FDαN = {f 1
DαN , f 2


DαN , f 3
DαN , f 4


DαN}


FDαM = {f 1
DαM , f 2


DαM , f 3
DαM , f 4


DαM}


FDαΠ = {f 1
DαΠ, f 2


DαΠ, f 3
DαΠ, f 4


DαΠ}


= {Right, Above, Left, Below}


each one using the membership value indicated. Fuzzy rules could then be generated


taking some or all of these factors into account, e.g., “Class A objects are minimally


to the right of Class D object AND maximally to the right of Class E objects.”


A side effect of these two above extensions is that if we do indeed separate the


directions this way and also use the previously discussed membership partitioning for


necessity and possibility, we could end up with direction becoming twelve separate,


albeit related, attributes:
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Right Above Left Below


Necessity Dα0N Dαπ/2
N DαπN Dα3π/2


N


Mean Dα0M Dαπ/2
M DαπM Dα3π/2


M


Possibility Dα0Π Dαπ/2
Π DαπΠ Dα3π/2


Π


This expansion could make mining more difficult, but on the other hand it could


allow for more expressive rules.


In addition a distance attribute would also make the rules more descriptive.


In particular it would offset the effects of the infinite landscape which says that


an object X 100 units distant from object Y can be equally to the right of object


Y as and object Z only one unit away. This could be another fuzzy attribute:


Fproximity = {adjacent, near,medium, far}. With distance included, spatial rules


could be more useful.


There is the matter of image edges seen in the Chapter 4 examples. Are the


detrimental effects of edge objects on rules a valid concern? By the same token,


could we dampen the effects of edge objects and still have valid rules? Such edge


compensation might be a feature worthy of investigation.


On a more practical level there is the matter of efficiency or rather inefficiency


caused by excessive mining of weak rules. Traditional association rule mining


algorithms all use some kind of itemset pruning based on the support of a given


itemset in the database. Each pruned itemset means that much less mining is


required. The current implementation of this system does not take a support


measurement into account in the initial phases. Is there a characteristic analogous


to small itemsets in our system? Yes and no. We are not dealing with itemsets per


se and thus itemset support cannot be measured. All objects are spatially related to
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all other objects; such a relation may simply have rather low membership. However,


we can know a class’s support level in a space before spatial relation extraction,


and by extension we can know the support of a pair of classes with our present


sum definition of support. If such a support level fell below a desired threshold, we


could eliminate those relations before they are even generated. On the other hand


though, relation extraction in and of itself is not the most expensive operation in


this framework. Rather it is landscape generation that is computationally expensive,


even with an approximation algorithm. Pruning may not offer relief if it only comes


after landscape generation. For example, supp(AB), the sum of class A and class B


objects, may be too low but supp(C) may be large making supp(AC) and supp(BC)


also large. This happens because our support is union based rather than traditional


intersection based support. This requires the generation of class A and class B


landscapes so that AC and BC relations can be extracted even though AB and BA


relations are unnecessary. This could make support level pruning very difficult to


implement.


Finally, there is an alternative approach more directly like Agrawal’s original


association rule mining, still based on Bloch relations and (Kuok, Fu and Wong


1998) fuzzy association rules but also directly on (Ordonez and Omiecinski 1999).


Just as Ordonez and Omiecinski use rule mining to generalize simple object co-


occurrence: “Images containing a class U object also contain a class V object” with


some support and confidence across an image base. We could extend that to rules


about object spatial relation co-occurrence. Since the source relations are fuzzy, we


would explicitly require the techniques of (Kuok, Fu and Wong 1998) to handle the


mining. Note that this would not generate the same kind of rules as this investigation,
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which attempts to associate one class of object with another in a direction, but rather


ones that associate relations with other relations:


A class I object has a class J object to its Right ⇒ A class K object has


a class L object Above it (S,C).


A system implementing this might make a nice complement to the one tested here.
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Table A.1: Obj-Obj Relations


α RO# RC# OO# OC# necess avg poss


0.00000 7 H 8 H 0.0000 0.1362 0.3228


0.00000 7 H 9 H 0.0000 0.0630 0.1382


0.00000 7 H 10 G 0.6887 0.7590 0.8233


0.00000 7 H 11 G 0.9959 0.9999 1.0000


0.00000 7 H 12 F 0.4881 0.5474 0.6058


1.57080 7 H 8 H 1.0000 1.0000 1.0000


1.57080 7 H 9 H 1.0000 1.0000 1.0000


1.57080 7 H 10 G 0.3113 0.3867 0.4654


1.57080 7 H 11 G 0.0041 0.0714 0.1524


1.57080 7 H 12 F 0.5119 0.5709 0.6287


3.14159 7 H 8 H 0.0000 0.1362 0.3228


3.14159 7 H 9 H 0.0000 0.0630 0.1382


3.14159 7 H 10 G 0.0000 0.0000 0.0000


3.14159 7 H 11 G 0.0000 0.0000 0.0000


3.14159 7 H 12 F 0.0000 0.0000 0.0000


4.71239 7 H 8 H 0.0000 0.0000 0.0000


4.71239 7 H 9 H 0.0000 0.0000 0.0000


4.71239 7 H 10 G 0.0000 0.0000 0.0000


4.71239 7 H 11 G 0.0000 0.0627 0.1429


4.71239 7 H 12 F 0.0000 0.0000 0.0000


0.00000 8 H 7 H 0.0000 0.1362 0.3228


0.00000 8 H 9 H 0.0000 0.1401 0.3331
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Table A.1: Obj-Obj Relations cont.


α RO# RC# OO# OC# necess avg poss


0.00000 8 H 10 G 0.9959 0.9999 1.0000


0.00000 8 H 11 G 0.6904 0.7603 0.8242


0.00000 8 H 12 F 0.7016 0.7712 0.8345


1.57080 8 H 7 H 0.0000 0.0000 0.0000


1.57080 8 H 9 H 1.0000 1.0000 1.0000


1.57080 8 H 10 G 0.0000 0.0631 0.1440


1.57080 8 H 11 G 0.0000 0.0000 0.0000


1.57080 8 H 12 F 0.2984 0.3733 0.4519


3.14159 8 H 7 H 0.0000 0.1362 0.3228


3.14159 8 H 9 H 0.0000 0.1401 0.3331


3.14159 8 H 10 G 0.0000 0.0000 0.0000


3.14159 8 H 11 G 0.0000 0.0000 0.0000


3.14159 8 H 12 F 0.0000 0.0000 0.0000


4.71239 8 H 7 H 1.0000 1.0000 1.0000


4.71239 8 H 9 H 0.0000 0.0000 0.0000


4.71239 8 H 10 G 0.0041 0.0719 0.1536


4.71239 8 H 11 G 0.3096 0.3846 0.4629


4.71239 8 H 12 F 0.0000 0.0000 0.0000


0.00000 9 H 7 H 0.0000 0.0630 0.1382


0.00000 9 H 8 H 0.0000 0.1401 0.3331


0.00000 9 H 10 G 0.6887 0.7590 0.8233


0.00000 9 H 11 G 0.4842 0.5434 0.6019
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Table A.1: Obj-Obj Relations cont.


α RO# RC# OO# OC# necess avg poss


0.00000 9 H 12 F 0.9919 0.9996 1.0000


1.57080 9 H 7 H 0.0000 0.0000 0.0000


1.57080 9 H 8 H 0.0000 0.0000 0.0000


1.57080 9 H 10 G 0.0000 0.0000 0.0000


1.57080 9 H 11 G 0.0000 0.0000 0.0000


1.57080 9 H 12 F 0.0000 0.0581 0.1371


3.14159 9 H 7 H 0.0000 0.0630 0.1382


3.14159 9 H 8 H 0.0000 0.1401 0.3331


3.14159 9 H 10 G 0.0000 0.0000 0.0000


3.14159 9 H 11 G 0.0000 0.0000 0.0000


3.14159 9 H 12 F 0.0000 0.0000 0.0000


4.71239 9 H 7 H 1.0000 1.0000 1.0000


4.71239 9 H 8 H 1.0000 1.0000 1.0000


4.71239 9 H 10 G 0.3113 0.3867 0.4654


4.71239 9 H 11 G 0.5158 0.5748 0.6325


4.71239 9 H 12 F 0.0081 0.0753 0.1560


0.00000 10 G 7 H 0.0000 0.0000 0.0000


0.00000 10 G 8 H 0.0000 0.0000 0.0000


0.00000 10 G 9 H 0.0000 0.0000 0.0000


0.00000 10 G 11 G 0.0078 0.1491 0.3422


0.00000 10 G 12 F 0.0157 0.1604 0.3567


1.57080 10 G 7 H 0.0000 0.0000 0.0000
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Table A.1: Obj-Obj Relations cont.


α RO# RC# OO# OC# necess avg poss


1.57080 10 G 8 H 0.0041 0.0719 0.1536


1.57080 10 G 9 H 0.3113 0.3867 0.4654


1.57080 10 G 11 G 0.0000 0.0000 0.0000


1.57080 10 G 12 F 0.9843 0.9994 1.0000


3.14159 10 G 7 H 0.6887 0.7590 0.8233


3.14159 10 G 8 H 0.9959 0.9999 1.0000


3.14159 10 G 9 H 0.6887 0.7591 0.8233


3.14159 10 G 11 G 0.0000 0.1314 0.3239


3.14159 10 G 12 F 0.0000 0.1247 0.3196


4.71239 10 G 7 H 0.3113 0.3867 0.4654


4.71239 10 G 8 H 0.0000 0.0631 0.1440


4.71239 10 G 9 H 0.0000 0.0000 0.0000


4.71239 10 G 11 G 0.9922 0.9998 1.0000


4.71239 10 G 12 F 0.0000 0.0000 0.0000


0.00000 11 G 7 H 0.0000 0.0000 0.0000


0.00000 11 G 8 H 0.0000 0.0000 0.0000


0.00000 11 G 9 H 0.0000 0.0000 0.0000


0.00000 11 G 10 G 0.0000 0.1314 0.3239


0.00000 11 G 12 F 0.0039 0.0686 0.1458


1.57080 11 G 7 H 0.0000 0.0627 0.1429


1.57080 11 G 8 H 0.3096 0.3846 0.4629


1.57080 11 G 9 H 0.5158 0.5748 0.6325
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Table A.1: Obj-Obj Relations cont.


α RO# RC# OO# OC# necess avg poss


1.57080 11 G 10 G 0.9922 0.9998 1.0000


1.57080 11 G 12 F 0.9961 0.9999 1.0000


3.14159 11 G 7 H 0.9959 0.9999 1.0000


3.14159 11 G 8 H 0.6904 0.7603 0.8242


3.14159 11 G 9 H 0.4842 0.5434 0.6019


3.14159 11 G 10 G 0.0078 0.1491 0.3422


3.14159 11 G 12 F 0.0000 0.0602 0.1367


4.71239 11 G 7 H 0.0041 0.0714 0.1524


4.71239 11 G 8 H 0.0000 0.0000 0.0000


4.71239 11 G 9 H 0.0000 0.0000 0.0000


4.71239 11 G 10 G 0.0000 0.0000 0.0000


4.71239 11 G 12 F 0.0000 0.0000 0.0000


0.00000 12 F 7 H 0.0000 0.0000 0.0000


0.00000 12 F 8 H 0.0000 0.0000 0.0000


0.00000 12 F 9 H 0.0000 0.0000 0.0000


0.00000 12 F 10 G 0.0000 0.1247 0.3196


0.00000 12 F 11 G 0.0000 0.0602 0.1367


1.57080 12 F 7 H 0.0000 0.0000 0.0000


1.57080 12 F 8 H 0.0000 0.0000 0.0000


1.57080 12 F 9 H 0.0081 0.0753 0.1560


1.57080 12 F 10 G 0.0000 0.0000 0.0000


1.57080 12 F 11 G 0.0000 0.0000 0.0000
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Table A.1: Obj-Obj Relations cont.


α RO# RC# OO# OC# necess avg poss


3.14159 12 F 7 H 0.4881 0.5474 0.6058


3.14159 12 F 8 H 0.7016 0.7712 0.8345


3.14159 12 F 9 H 0.9919 0.9996 1.0000


3.14159 12 F 10 G 0.0157 0.1604 0.3567


3.14159 12 F 11 G 0.0039 0.0686 0.1458


4.71239 12 F 7 H 0.5119 0.5709 0.6287


4.71239 12 F 8 H 0.2984 0.3733 0.4519


4.71239 12 F 9 H 0.0000 0.0581 0.1371


4.71239 12 F 10 G 0.9843 0.9994 1.0000


4.71239 12 F 11 G 0.9961 0.9999 1.0000


Table A.2: Class-Class Relations


α RO# RC# OO# OC# necess avg poss


0.00000 13 H 15 F 0.9919 0.9996 1.0000


0.00000 13 H 14 G 0.9959 0.9999 1.0000


1.57080 13 H 15 F 0.5119 0.5709 0.6287


1.57080 13 H 14 G 0.0041 0.2290 0.4654


3.14159 13 H 15 F 0.0000 0.0000 0.0000


3.14159 13 H 14 G 0.0000 0.0000 0.0000


4.71239 13 H 15 F 0.0081 0.0753 0.1560


4.71239 13 H 14 G 0.3113 0.4807 0.6325


0.00000 15 F 13 H 0.0000 0.0000 0.0000
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Table A.2: Class-Class Relations cont.


α RO# RC# OO# OC# necess avg poss


0.00000 15 F 14 G 0.0000 0.0924 0.3196


1.57080 15 F 13 H 0.0000 0.0251 0.1560


1.57080 15 F 14 G 0.0000 0.0000 0.0000


3.14159 15 F 13 H 0.4881 0.7727 1.0000


3.14159 15 F 14 G 0.0039 0.1145 0.3567


4.71239 15 F 13 H 0.0000 0.3341 0.6287


4.71239 15 F 14 G 0.9843 0.9996 1.0000


0.00000 14 G 13 H 0.0000 0.0000 0.0000


0.00000 14 G 15 F 0.0157 0.1604 0.3567


1.57080 14 G 13 H 0.0000 0.3407 0.6325


1.57080 14 G 15 F 0.9961 0.9999 1.0000


3.14159 14 G 13 H 0.6887 0.9196 1.0000


3.14159 14 G 15 F 0.0000 0.1248 0.3196


4.71239 14 G 13 H 0.0000 0.1499 0.4654


4.71239 14 G 15 F 0.0000 0.0000 0.0000






