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The work of Agrawal et al. on the type of data mining known as association
rule mining has been the basis for continuous research over the past seven years.
Kuok, Fu and Wong have extended association rules with the fuzzy set theory
of Zadeh to build a system more adapted to real world data. Meanwhile Bloch
has recently applied this same fuzzy set theory to the area of image analysis,
particularly to the task of finding relationships between image objects. Koperski
and Han have been the leaders in adapting general data mining techniques,
including association rules, to the domain of spatial data. This proposed thesis
offers a synthesis of these techniques to form a unified system for generalized image
analysis, specifically finding general fuzzy rules about the relationships of objects

in image data sets.
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CHAPTER 1
INTRODUCTION

With the rapid advancement in computing power, storage capacity, and
collection techniques, more and more spatial image data are being collected. This
data explosion is compounded by the fact that because the data sources, namely
the earth, sea and atmosphere, are dynamic, data often have to be recollected
to be of real use, creating another dimension to the data. But the raw data
itself is only the first step in understanding. Analysis is required to find useful
generalized information, but considering the volume of the data, human expert
analysis becomes a tedious and tiresome job. This problem has given rise to
many algorithms and systems seeking to extract useful generalized observations
of various types. Such analysis commonly goes by the broad term Knowledge
Discovery in Databases (KDD) or sometimes simply Knowledge Discovery - the
finding of implicit and previously unknown or unseen information in a database
by the application of computer algorithms. In fact, Fayyad et al. declare that
“Knowledge Discovery is the most desirable end-product of computing” (Fayyad
et al. 1996). Unfortunately, they also concede that it is “ ... one of the most
difficult computing challenges to do well” (Fayyad et al. 1996). Doing it well is a
pursuit in which many researchers are engaged and they have turned out several
techniques towards that end. A useful system could be constructed by combining

some of these existing techniques into a multi-layer system.



1.1 Motivation

As mentioned before, much data is collected from spatial sources such as
remote sensing of the oceans and terrain. We are often interested in the nature
of the many components of such images, objects and regions (e.g., a stand of
trees, coral reefs, etc.) and may apply KDD techniques such as classification to
extract these. But now that we know the classes of the various entities in an
image or more likely a large set of images, what next? These components do not
exist by themselves; they exist in an image (and on the earth in the case of real
world remote sensing) along with many other objects. We would like to know
the relationships among the objects. For example, “Sandy ocean bottom #235
occurs 2 miles to the right of coral reef #769” in an image (which may in turn
mean east or down current in the real world). Or “Grassy meadow area #114 is
located 5 miles above deciduous forest #80.” However, considering the volume
of data, even individual spatial relations may not be of interest to us. Rather,
generalized information on aggregates of the data is more immediately useful.
How does one class of region relate to other classes? An answer, courtesy of a
specific KDD system, might be “Lakes (a class) tend to occur next to mountains
(another class)” or “Sandy bottoms (a class) tend to occur close to and below coral

formations (another class).” A more recognizably useful scenario might be:

e Discovered “Rocky bottoms usually occur to the west (having corrected for
real world orientation) of bottom type #12”.

e Bottom type #12 has often proven a good place to drill for oil.
e Remote sensing data shows no bottom type #12 - only a rocky bottom.

e However, knowing the general relationship of the two classes, let’s focus on
the area west of the rocky bottom and see what turns up.
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A real world example is the joint project between the Naval Oceanographic
Office (NAVO) and the Mississippi State University Computer Science
Department, in which undersea side-scan SONAR data is being analyzed by a
research group. The image data is being processed by region growing techniques
and the Bayesian classifier Autoclass, which partitions the sea-floor data into
discrete regions of relatively few classes. Doing this effectively and efficiently is the
current focus of the research. Generalizing these results in their spatial context is
a next step. A rule induction system could be used to take the classified image
set and discover the generalized spatial nature of the component parts, thereby

providing more human usable information about the data.

1.2 Background

In 1993, Agrawal, Imielinski and Swami presented their theory of association
rule mining for finding generalizations in a database, with their initial test domain
being retail store transaction data. The application is not limited to this domain,
but can be applied to general boolean attribute data (e.g., item is/is not purchased,
person is/is not married, system is/is not operational). Indeed subsequent research
has extended the technique to categorical attributes (e.g., car make in {Ford, GM,
Toyota, Daimler, etc.}) and quantitative attributes (e.g., client Age in [18-24], [25-
30], [30-35], etc.). Kuok, Fu and Wong have even extended that with fuzzy set
theory to extract fuzzy association rules from quantitative data (e.g., if client Age
in ‘Young Adult’ to some degree then income is ‘Low’ to a certain degree for some
percentage of the database).

Among the researchers exploring association rules are Koperski and Han who

have been applying a variety of other data mining techniques to spatial data, data
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pertaining to the position of objects in a space. Koperski and Han attempt to
make generalizations along the lines of: 65% of houses are west_of a lake. While
they do acknowledge the mining of image or raster data, they typically work on
data actually in a spatial database system in which the data has already been
broken down and analyzed to a certain degree for its initial insertion into such a
System.

Somewhat similar is the work of Bloch, who has developed techniques for

finding spatial relationships between objects. The chief differences are:

1. She is working mainly on raw image data (such as MRI scans) rather than
prepared spatial database entries.

2. She is using fuzzy set theory to take into account the varying morphology
(i.e., size and shape) of the objects in question, which can have an impact
on how best to describe the spatial relationship.

The result is not a single precise number but a range, which may seem like a failing,
but which actually captures the imprecision of the real relationship.

The aforementioned fuzzy set theory is a generalization of classical set theory
that was first proposed by Zadeh in 1965. Whereas an element of a classical
or crisp set is either totally in a given set or not in it at all, fuzzy set theory
allows for elements to be in a set to a degree ranging from total inclusion to total
exclusion. The former works fine for domains where set membership is indeed a
binary relationship such as belonging to a sports team or being a US State. The
latter is useful for situations such as the set of all TALL people or OLD people,
sets which have no sharp boundaries unless they are arbitrarily imposed. The
applications above exploit this feature for their own designs. An object A is to the
RIGHT of object B to some degree in a Bloch image. A person is in the ‘Young

Adult’ set to some degree: 1.0 for a 22 year old; 0.3 for a 16 year old.



1.3 Hypothesis and Main Goals
Fuzzy spatial techniques based on the work of Bloch (1999) can be applied to
a partitioned and classified image data source, possibly NAVO sea-floor data, to
generate intermediate data about the images and the objects therein. Adaptations
of standard association rule mining algorithms can then be applied to this meta-
data to generate classic association rules or even fuzzy association rules describing
the nature of the image components. The synthesis of these elements will provide

generalized information useful for our purposes.

1.4 Organization

The remaining chapters are organized as follows:

e Literature Review: A survey of the source work used for this research.

e Research Plan:

— Methodology: A statement of the formal methods on which the research
will be based including techniques and algorithms from the fields of
spatial relations, data/association rule mining, and fuzzy sets; also some
of the pitfalls, and possible solutions, that may be encountered along
the way.

— Hypothesis: A restatment of the hypothesis.

— Plan of Attack: An outline of how the aforementioned techniques will
be implemented and integrated to form an actual system to be used for
the experiments.

— Publication Plan: A list of journals and conferences where finished paper
may be submitted.



CHAPTER 1II
LITERATURE REVIEW

2.1 Fuzzy Logic/Fuzzy Sets

In 1965, Lotfi Zadeh presented his controversial theory of fuzzy sets(Zadeh
1965), and he is generally recognized as the founder of the discipline, though
Black (1937) did discuss the related concept of vagueness as far back as 1937,
and some have pointed out that there were considerations on the issue of a region
between true and false as far back as Plato (Brule 1985). What Zadeh proposed was
a generalization of classical set theory to handle the inexactness, approximation
and what he calls elasticity of real life, such as the concepts tallness or nearness.

We will assume the reader has an understanding of the basics of classical set
theory, its properties, and operations such as union and intersection, and so will
not review those fundamentals here except to say a word about the notion of a
characteristic function. One of the common ways of describing a set is by giving
its characteristic function(Schmucker 1984), and in fact a set and its characteristic
function are often used interchangeably. A characteristic function is one that maps
the elements of the universe of discourse onto the two element set {0, 1}, sometimes
called a valuation set(Dubois and Prade 1980). This means that given a universe
X and a subset A:

1 iffzeA
chars(z) =

0 ifvg A
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For example, given a universe X = {a,b,c,d,e, f, g}, a characteristic function

could yield a subset A:

A={a/1,b/0,¢/0,d/1,¢e/0, f/1,9/0}

as a result. Customarily, false members are not shown, nor are the characteristic

values (there could be only one) resulting in the more familiar roster form

A=A{a,d, f}

(which we can do for a finite subset of a finite universe). This works fine for
domains in which set membership is truly binary such as the set of all students
currently enrolled at Mississippi State University, or the set of all Nobel Laureates.
It does not work for less precise everyday concepts such as the set of all TALL men
in the room or the set of all stores CLOSE to a residence.

To handle these imprecise scenarios, Zadeh proposes defining set membership
not on the finite two-valued set {0,1} but rather over the real interval [0, 1]. Set
elements can still take the old characteristic values or membership values of 0 and
1 - but they can also now take on say 0.7 or 0.34 indicating partial set membership
or a degree of membership. This fuzzy set can be described by a different kind of
characteristic function, a membership function denoted by p4(z) and taking values
in [0, 1].

For example, given the same universe as above X = {a,b,c,d,e, f,g}, a

membership function could yield a fuzzy subset A:

A={a/0.9,b/0.23,¢/0,d/0.7,e/0.4, f/1,9/0}
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as a result. Again, completely false members (i.e., with a 0 degree of membership)
are not shown. However, other fuzzy membership values are retained. A roster

form in this case would be

A ={a/0.9,b/0.23,d/0.7,¢/0.4, f/1}

This concept of partial membership allows us to represent real world concepts
more in line with the everyday manner in which we consider them. Returning
to the example of the set of TALL people, classifying 7’1" Frank as TALL
( prapr(Frank) = 1) and 4'10” Cathy as not TALL ( purarr(Cathy) = 0) was not a
problem before with classical sets. But what about 6'2” David? The typical natural
language response is probably along the lines of “sort of” or “somewhat” and
assigning classical set membership can be difficult and unsatisfactory. However,
prarr(David) = 0.7 better captures the imprecision of the real world description.
Along these same lines, the fuzzy membership function eliminates the crisp
boundary between classical set inclusion and exclusion which is often capricious
and arbitrary. For example the classical set RICH may be designated by a
characteristic function by which all people with income at or above $80,000 are
members. Someone with income of $79,999 is not RICH while someone making
$80,000 is RICH. So the difference between RICH and not RICH is now a mere
dollar which is unrealistic. A gradual fuzzy membership function remedies this:
Warren Buffett is still 100% RICH and someone barely scraping by is still 0%
RICH but the path from the one to the other is smoother, with the $79K employee

being in RICH to some degree.
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Exactly what the fuzzy membership function looks like is not carved in stone

but is chosen by the user based on his needs and domain knowledge. There are
however several common standard membership functions including trapezoidal,
triangular, Gaussian, bell curves, and sigmoid (Yen and Langari 1998). Some

examples are (Yen and Langari 1998):

0 ifr<a

' (x—a)/(b—a) ffa<z<b
triangle(z : a,b,c) = <
(c—x)/(c=b) ffb<z<c

0 iffx>c¢

gauss(x :m,o) = exp (—

Again, which is used depends on the domain, and the values of the a, b, ¢, m, o may
depend on domain specific knowledge gathered by the user or through some other
means, or whatever other information he wants.

Since fuzzy set theory is a generalization of classical set theory, it stands to
reason that there are operations analogous to those on classical sets, including, but
not limited to, complement /negation, intersection/disjunction, union/conjunction,
and cardinality.

The complement of a fuzzy set is simply 1 - membership. That is:

poa(z) =1 = pa(z).
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This makes sense; if an item is in set Q to degree 0.75, it stands to reason that it
is NOT in set Q to degree 0.25.

Things are more difficult with union and intersection. Fuzzy set theory
does not have an intersection/disjunction operation per se but rather a class of
operations called triangular norms or t-norms. A t-norm is a two-valued function
that maps pairs [0,1] x [0,1] onto a single value in [0,1]. A t-norm is formally
defined as satisfying a certain set of axioms.

A t-norm, denoted t(a,b), satisfies the following axioms for any a,b,c,d €
[0,1], (where a,b,c,d could be interpreted as fuzzy membership values pa(z),

up(x), uc(x), and pup(x) respectively, where x € X, the universe):

1. t(0,0) = 0; t(a,1) = t(1,a) = a (function boundaries)

(
(
(
(

Also, the the inequality
tw(a,b) < t(a,b) < min(a,b)

where

min(a,b) if max(x,y) =1
gy ) D) fmar(a,y
0 T,y <1

must be satisfied (Yen and Langari 1998).
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In a similar fashion, fuzzy union/conjunction is implemented by a class of
operations called t-conorms. For the same conditions above, a t-conorm, denoted

s(a, b), satisfies the following:

1. s(1,1) =1; s(a,0) = 5(0,a) = a (function boundaries)

< s(e,d) whenever a < ¢ and b < d (monotonicity)
(

e
V)

~ o~ o~
8
S| o

)
) = s(b,a) (commutativity)
(

Also,the inequality
max(a,b) < sy(a,b) < s,(a,b)

where

max(a,b) if min(z,y) =0
sw(a,b) =
1 z,y >0

must be satisfied.(Yen and Langari 1998) Furthermore, these operations are

pairwise related:
tm(a,b) =1—5,(1 —a,1—10)

and vice versa.

Given these operator classes, one can then say:

,UAOB(CC) = tm(ﬂA(x)’ /’LB<'/I;))

where t,, is some t-norm.
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Since, these are classes of operations, we can choose the ones that best suit

our domain, provided they adhere to the axioms and are implemented in dual
pairs. For example, we may choose to use the Einstein product t-norm out of the

huge number of choices (Zimmerman 1996):

a-b
2—[a+b—a-b)

t Binstein (aa b) -

However, when the time comes to apply the fuzzy set union operation, the
corresponding Einstein sum t-conorm should be used for consistency.

That said, Bellman and Giertz (1973) have made a case for the standard fuzzy
set union and intersection operations first used by Zadeh, as the best and most

natural extensions of classical set theory:

pang() = taa(pa(z), pp(x)) = min(pa(z), pp(z)), and

paup(x) = ssa(pa(@), pp(r)) = maz(pa(z), pp(w)).

Another often useful operation or property of classical sets is cardinality which
is basically a count of the number of elements in a set, assuming the set in question
is finite. However, since elements of fuzzy sets are often not completely in the
set, it seems incorrect to count each member regardless of degree of membership.

Fortunately the answer is quite simply the sum of the fuzzy memberships (Dubois

and Prade 1980):

A= 3 pala).

reX

This formula also works correctly on a classical set.
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As useful as these analogous operations are, it is important to point out what
is noticeably absent in fuzzy sets. Returning once again to the earlier example,

X ={a,b,c,d,e, f,g}, with a fuzzy subset

A ={a/0.9,b/0.23,¢/0,d/0.7,¢/0.4, f/1,9/0}

using the aforementioned complement operation yields:

-A=1{a/0.1,b/0.77,¢/1,d/0.3,¢/0.6, f/0,g/1}.

Applying the standard fuzzy union and intersection operations results in:

AUu-A = {a/0.9,b/0.77,¢/1,d/0.7,¢/0.6, f/1,9/1}, and

AN—-A = {a/0.1,b/0.23,¢/0,d/0.3,¢/0.4, /0, g/0}.

Recall from classical set theory that given a boolean set B in a universe X:

Bu-B = X, and

BNn-B = 1§

These are known as the the Law of Ezxcluded Middle and the Law of Contradiction
(Yen and Langari 1998) respectively, and they are conspicuously absent from
generalized fuzzy theory. For some, this represents a failing of fuzzy logic, but
for others it is thoroughly in line with expectations. The very nature of fuzzy
set membership is that an element can be both in a set and in its negation

simultaneously.



14

2.2 Fuzzy Relative Positioning
Dr. Isabelle Bloch of the Ecole Nationale Supérieure des Télécommunications
in Paris has been applying the theory of fuzzy sets to the problem of analysis of
spatial relations of objects in images (Bloch 1999). We often want to describe the
relationships between objects with imprecise natural language terms like “above”

or “to the right of.” This is made difficult by the facts that

e in real life objects are simply not always exactly “to the left of” other objects
but can be offset.

e the shape and size, the morphology, of objects has an impact on their spatial
relationship.

If a man is standing to the exact left of a woman and then shuffies forward a
few inches, he does not completely cease to be to her left - just to a lesser degree.
A man standing in the angle of a large L -shaped building may be both to the right
and below it (assuming a bird’s-eye view). As he walks away, he may continue to
be to the right and be below for several yards.

Bloch offers a new methodology for dealing with this phenomenon in such
domains as medical imaging, in both 3D and 2D space. Bloch actually utilizes
fuzzy theory in two different ways. The main one is the directional relationship
between objects in an image space as mentioned above. In other words, object A
can be to the right of object B to some fuzzy degree. But objects themselves can
also be defined as fuzzy sets to account for possible spatial imprecision, defined on
the universe S, the image itself. The elements of such a set are simply the points
or pixels in the object. Being a fuzzy set, an object A can be represented by fuzzy

membership function p4(z),z € S on the interval [0, 1]. It should be noted that
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since crisp sets are specializations of fuzzy sets, this definition can handle crisp
objects taking only the values 0 and 1 as well.

Since Bloch’s method is designed to work in 3D space, a direction is defined
by two angles a; € [0,27], a heading, and ay € [—

%, 5], an elevation where o =

(a1, ag). This then yields the unit vector

@ay 0y = (COS Qg COS a1, €OS g SIN vy, SiN (g )’

for evaluation. If we choose to work only in 2D space, then oy = 0 or we could
simply let o = .

Given this a, we want to find the degree to which an object A, defined by
pa(x), is in that direction of a reference object R (ug(x)), which is simply another
object in the image universe. This is done by first constructing what Bloch refers

to as a landscape which is the area

. around the reference object R ... such that the membership value
of each point corresponds to the degree of satisfaction of the spatial

relation under examination(Bloch 1999).

This landscape is itself a fuzzy set, denoted by pu,(R), where “in the direction o”
is the spatial relation in question. A visualization of such a landscape is shown
in Figure 2.2, generated from the sample image in Figure 2.1. Each point in the
image space, excluding the points of the square object itself, takes a grey value
from black to white indicating the degree of its membership in the fuzzy relation
“in the direction o = 0 of the square reference object, R”. White indicates full
membership, black indicates null membership, and the greys are various degrees

in between. The object itself has been explicitly colored black.



Figure 2.1: A shape in an image space

Figure 2.2: Landscape for o = 0

16
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Theoretically this landscape potentially extends over the entire universe, but

practically speaking a full roster generation is neither computationally desirable

nor necessary. We are only interested in the overlap between the landscape of R

and object A, specifically a function of u,(R)(z) and pa(x), which will indicate
the relationship between the points in A and the points in R.

The final result is not actually a single fuzzy value, but rather three making

an interval and a likely estimate. The values of the above function iterated over

the points in the objects are evaluated in the following forms:

Possibility
R
[[ = sup tha(R) (@) pale)
1,0 z
Necessity

NE o(4) = inf sfua(R)(@),1 - pua(a)

€S

Mean

ME  (4) = @ S (@) 1a (R)(2)

z€S

where t[] is a fuzzy t-norm, s[] is a fuzzy t-conorm, supremum is least upper bound,
and infinum is greatest lower bound. The possibility is an optimistic result - a
kind of max; necessity is a pessimistic result - a kind of min; mean is the average
membership degree over all the points. Together they express the value and interval
M € [N,II]. In Bloch’s opinion this can further represent the imprecision of the
spatial relationship.

As stated in the section on fuzzy sets, the membership function for a fuzzy

set is chosen by the user based on the various requirements of the domain. For the
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landscape function p,(R) Bloch has chosen a basic linear function

to(R)(P) = max <O, 1-— -

),PES

which turns the angle § into a fuzzy value in [0,1] (Again, while P € &,
computationally this is typically only calculated when P € A, A being the other
object in question). B (P) is the minimum of all the angles 5(P, Q) where @ € R,

and

B(P, Q) = arccos [CT};QUTM]

where Cﬁ% is the vector from the point in R to the point in A. So we are essentially
iterating over the points in A and finding the best angle to a point in R. This

angle is compared to the specified angle a.

2.3 Association Rules
The idea of association rule mining as a useful KDD technique was first put
forth in 1993 by Agrawal, Imielinski and Swami (1993) based on experiments with
retail store transaction database testbeds.

In short, an association rule takes the form
antecedent = consequent(c%con fidence, s%support)

where the antecedent consists of one or more items in the set of transactions being

mined and the consequent consists of only one item not in the antecedent.
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The support is the percentage of all transactions in the database containing

both the antecedent and the consequent, and it measures the significance of the rule

in the database. The confidence is the percentage of those transactions containing

the antecedent which also contain the consequent and measures the strength of

the rule. Together these two are the principal constraints on the association rule
mining process.

A classic example of an association rule is:

beer = chips(87% con fidence, 3% support)

Here 3% of all transactions (i.e., possibly a basket of goods purchased by a customer
on a store visit) in the database contain both beer and chips. It should be noted
that the opposite does not necessarily follow; transactions containing chips may
not include beer as well. Store management may be able to use rules such as these
to make decisions about store operations: where to place displays, when to have
sales and on what products, etc.

Following the notation of Agrawal, Imielinski and Swami, we formally define

association rules as follows:
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7 is the set of all items aka binary attributes in the database; 7 =
{1, I5,...,I,}

T is the transaction database

t is a transaction; t C 7

X is a set of some of the items; X C 7

t satisfies X if, for each item in X, ¢ contains that item; X C ¢

An association rule is X = I; st. X CINL € INL; € X

X = I, is satisfied in T with confidence 0 < ¢ < 1 iff at least ¢% of
transactions in T which satisfy X also satisfy ;.

The result is sometimes written X = I; | ¢

Items are sometimes called binary attributes because they can be view from a
boolean point view. Either I, is in a transaction or it is not. Both transactions
and itemsets are simply sets of items in the universe Z.
Additional constraints can be placed on antecedent and consequent to
generate more immediately useful rules such as
“Antecedent must contain I,,” or
“Consequent must be an element of a given set Q”.
The application of user-defined constraints other than support and confidence is
a subject for study in itself (Ng et al. 1998, Silberschatz and Tuzhilin 1996,
Smith 1999).
Support is an important constraint on the resultant rule, measuring statistical
significance and often business significance (given that these initial experiments are
retail oriented). Low support may indicate low preferences or rules that are not

worth further examination.
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Agrawal et al. (1993) decompose the Association Rule Mining problem into

two main subproblems:

1. Finding large itemsets (aka frequent itemsets). These are itemsets that
exceed the minimum support threshold supplied by the user. These large
itemsets will be used to generate the rules. They may be further pruned
by additional constraints. Not surprisingly, itemsets that do not meet the
threshold are small or infrequent itemsets.

2. Generating all the rules for each previously found large itemset. Formally:

large itemset Y = {I1,I5... , I;}, k > 2 will generate rules X = I, such that
XCY,|X|=k—1land[; =Y — X, ie, X =Y —X. Put another way, Y
is the union of the antecedent and consequent of every rule derived from it.

To enforce the user specified minimum confidence (minconf) threshold c:

if support(Y')/support(X) > c then the rule satisfies c.
Obviously we must have the support of X available for this. NOTE: As for
minsupp, we know that Y is large from (1), and we know that X is large
because all subsets of a large itemset are also large.

Agrawal, Imielinski and Swami (1993) mainly focus on the first subproblem

and offer a custom algorithm (later know as AIS), bearing in mind that

e measuring all possible itemsets on one pass could result in checking 2™
combos in a database where the number of items, m, could easily reach
1000; and

e measuring only size k itemsets on k' pass, building up candidates on each
could result in many passes (k = 1000).

In a subsequent paper, Agrawal and Srikant (1994) offer some refinements,

particularly:

e A relaxation of the requirement that rule consequents be a single item - sets
of items are now allowed.

e A new algorithm, Apriori, and its variants, which are significantly faster than
the previous AIS algorithm.
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Apriori and its brethren tackle the first subproblem previously laid out - that

of finding all large itemsets from which actual rules would then be derived. It
attempts to relieve problems of the AIS algorithm in which too many candidates
that turn out small are generated. Simply put, Apriori takes the set of large
k — 1 itemsets (i.e., knowledge it has a priori) joins them to create a new set of
k-itemsets, and prunes out the ones whose subsets are small. This follows from

the logic that since any subset of a large set must be large then:

a) large k-1 itemsets can alone be used to to generate candidate large
k-itemsets.

b) Any k-itemset with small & — 1 subsets cannot be large.

Apriori is significant because it is efficient, relatively simple, and it scales
well and has thus been used by much subsequent research as either a baseline for
comparison of new techniques or as the core algorithm for the development of new
techniques and domain specific modifications.

These initial forays into the realm of association rules dealt primarily
with binary attributes making the results Boolean Association Rules. Either a
transaction contains “soda” or it does not - true or false. But other kinds of data
exist, specifically quantitative such as price, which have values over a range, and
categorical such as brand (e.g., Dell, IBM, Compagq, etc.). Srikant and Agrawal
(1996) want to mine Quantitative Association Rules in order to gain information
about this kind of data and would like to do it with the rule infrastructure already
in place. A simple approach would be to partition the ranges and categories thereby
mapping them onto binary attributes, allowing us to apply the foundational binary

association rule techniques discussed earlier (e.g., Apriori algorithm). For example

e Price = 1200/ Price # 1200
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e Brand = Dell/Brand # Dell

or if there are many values, use intervals:

e Price € [1000,1500]/ Price ¢ [1000, 1500].

A transaction in this database would now contain (or not contain) the
item Price = 1200, which could be mined like other items. Unfortunately, this
partitioning can actually cause some contradictory problems. A few large intervals
can encompass many tuples and thus have high support while many smaller
intervals, while being more selective, may yield low and perhaps unacceptable
support. On the other hand, a small interval, say Age € [21, 22] may provide for

a nice specific high confidence rule such as

Age € [21,22] — GraduatedCollege(80%)

whereas widening the interval to gain support brings in more negative tuples

lowering the rule confidence:

Age € [18,22] — GraduatedCollege(40%)

not to mention losing some of the rules focus. A tighter interval may boost
confidence but lower support and vice versa.

Srikant and Agrawal attempt to counter this by mining across all values
or intervals, which have been coded with a new integer representation, and
then selectively combining them to increase support, producing additional, more
general “items” as there are called. For example, Price € [500,999] and

Price € [1000,1499] may both be probed for support in the database, leading to
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Price € [500,1499] being examined as well. All three could have minsupp and be
used to find rules. The obvious problem here is that such a sweeping approach will
incur much more computing time. They try to relieve this by adding a mazimum
support constraint to limit the combinations, though a lot of computing time will
still be needed overall. The other less apparent caveat is the output of an excessive

number of rules which could be either redundant or simply not useful. For example,

Price € [500,1499] = Mem € [64,128] (75%sup, 80%conf)

Price € [500,999] = Mem € [64,128] (25%sup, 78%conf)

shows that the second rule is essentially contained in the first and hardly conveys
any more information. On this front Srikant and Agrawal have offered an
automated measure of interest calculation to prune such redundancies before
presentation to the user.

While quantitative rules do open up another kind of attribute to association
rule mining, Kuok, Fu and Wong (1998) contend that there are still some
limitations that need to be dealt with. Namely, the harsh boundaries created
by the partitioning of quantitative attributes into intervals cause an unnatural
division of the data and subsequently of the resultant rules. For example, the
intervals Age € [20 — 29] and Age € [30 — 39] create an abrupt shift at the 29
year point, though in reality there is none. This is essentially the same problem
discussed earlier regarding the term RICH and the crisp cutoff point (> $80,000)
for membership in that set. Kuok et al. (1998) offer a similar remedy for rule

mining.
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Quite simply, they propose fitting quantitative rules with fuzzy set theory to
create Fuzzy Association Rules. Instead of the above Age intervals, the attribute
Age could be partitioned into linguistic fuzzy sets still backed by the intervals at
the membership function level. For example, we could have Age € young adult
and Age € adult, whose boundaries are fuzzy. Quantities of 21 - 28 could still have
maximal membership (1.0) in the young adult set with membership beginning to
decrease at 20 and 29. Ages 30 and above could also be members of the set but to
a lesser and lesser degree. Likewise, ages 29 and below would be members of the
adult set to some degree.
Kuok, Fu and Wong (1998) offer this formalism for their Fuzzy Association

Rule technique (cf. Agrawal, Imielinski and Swami above):

T is transaction database of n tuples t: T' = {t1,ts,... ,t,}
7 is the set of all items or attributes (e.g., Age, Price, etc.) in the
database; T = {I, I5,..., I, }
Each item I can have membership in its own fuzzy sets:
Fro={fh, f2. - i} es.

Foge = {young adult, adult, middle — aged, senior}

Freignt = {short,average,tall}

A Fuzzy Association Rule is

XisA=Y isBst. XCIANYCIANXNY =0
Also

A=Afor fors s Japd [ 26 € XA fo € Fy
B={fy:fp-- s Juy Uk €Y Ny, € Fy,

Just as fuzzy set theory requires its own operations analogous to classical set

operations, such as union, so too does fuzzy association rule mining. Boolean
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association rules involve finding all large or frequent itemsets which meet a user-
specified support threshold, support being the percentage of all database tuples
which contain all elements of the itemset in question. Kuok et al. (1998) present
an analogous measure called significance to gauge an itemsets frequency in the
database. The major difference is, since we are dealing with fuzzy sets, each item’s
presence is weighted by its fuzzy membership degree in [0,1] before being divided
by the number of tuples in the database T. In this respect, significance is similar
to a fuzzy cardinality operation.

Formally, Kuok, Fu and Wong (1998) give the significance factor, Six, 4 as:

Signi ficance = Sum of votes satisfying (X, A)
J B Number of tuples in T
> {ow (il
S _ t;€T xjeX
= total(T)
where
ta, (tilxs]) i g, > w
aq; (tilz;])) = e ’ a; € A
0 otherwise

One thing to note here: the function a,, is a standard fuzzy operation known as
an alpha-cut which is simply a threshold applied to a fuzzy set, in this case p,,,
that zeroes out memberships below a certain degree, in this case 0 < w < 1.
Since we are using a product operation, any fuzzy membership that is zero,
causes the measure for the entire tuple to be zero - the desired result. An
unsupported attribute makes the entire attribute set useless for the significance

calculation of that tuple. All tuple products, each having been weighted by the



27
attribute fuzzy values, are then summed and compared to the database as a whole,
giving the fuzzy support or significance. Notice that if this operation were applied
to crisp sets, as long as 0 < w < 1 (which it should always be), the products will
always end up as either 0 or 1 and the final result will be the classical itemset
support as in the original work by Agrawal, Imielinski and Swami (1993).

If there is a fuzzy analogy to support, it stands to reason that there is also
one for confidence. Kuok et al. (1998) offer a calculation for the certainty factor
of a resultant rule, based on the above defined significance.

Not surprisingly, this factor is directly related to the confidence measures of

classical association rules, which can be calculated on a rule from itemset Y:

supp(Y')

where X C Y
supp(X)

confx—y-x =
In like fashion, Kuok et al. (1998) offer:

S
Certainty = C((X7A>,(y73>) — 220 where Z =X UY,C=AUB
(X,4)

for a rule ‘If X is A then Y is B’, which is a logical extension of the
support /significance analogy.

Through application of these techniques, Kuok, Fu and Wong believe they
present a more robust system for mining useful real-world rules on quantitative

data, utilizing fuzzy set theory operations.

2.4 Spatial Data Mining
According to Fayyad et al.(1996), Data Mining is the algorithmic application

step of the full KDD (Knowledge Discovery in Databases) process which also
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includes input preparation and output interpretation and utilization. Even so, it is
a very broad term encompassing such subfields as clustering, neural networks, rule
mining, etc. An important consideration when discussing data mining is the type of
data being mined. General data mining literature usually centers on data typically
found in a standard relational database system (RDBMS): retail transaction data,
personnel data, client data, and the like. For the past several years, Jiawei Han
and Kris Koperski have been among the chief exponents of Spatial Data Mining

which they describe as

. the extraction of implicit knowledge, spatial relations, or other
patterns not explicitly stored in spatial databases (Koperski and Han

1995).

A spatial database system is generally one like an RDBMS that has support
for spatial data structures (e.g., MBRs - Minimal Bounding Rectangles), spatial
operations (e.g., Spatial Join), and general spatial access methods or SAMs
(Koperski, Han and Adhikary 1998). That said, a spatial database would not
be exclusively tasked with handling spatial data, but in RDBMS fashion, would
need to hold or have access to non-spatial data related to the spatial objects as well.
Simply having a spatial object A and spatial object B is not as useful as knowing
also that object A is a house and object B is a lake. In fact one of the uses for
spatial data mining is “discovering relationships between spatial and nonspatial
data” (Koperski, Han and Adhikary 1998).

Along these lines, Koperski and Han (1995) have done work on adapting the
techniques of regular database association rule mining as presented by Agrawal,
Imielinski and Swami (1993) for use with spatial data. Like the originals,

spatial association rules still take the form X = Y (c%) except rather than
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representing items or sets of items, X and Y now stand for spatial or nonspatial
predicates(Koperski, Han and Adhikary 1998) such as west_of(x,y), spatial, since
it deals with the objects location in space, or isa(z,lake), nonspatial, since it
describes the nature of the object but not its position. This is not far removed
from the original association rule definition since they are boolean rules with binary
attributes (“item X is present or it is not”). The aforementioned predicates are
essentially the same thing. Rules involving various combinations of these could be

mined to uncover hidden information about the data. For example,

isa(z, gol fecourse) = contains(x,lake)(100%)
isa(x,town) = adjacent_to(xz,river)(81%)

close_to(z, beach) Aisa(x, house) = price(x, high)(76%)

are spatial association rules saying golf courses always have lakes inside, towns are
usually located on rivers, and houses by the beach are usually expensive, “usually”
being a linguistic approximation of the given high confidence values. It should
be noted that the concept of support still applies, so while the golf course/lake
connection may be strong, there may not be many golf courses in our database
making the rule rather insignificant. A strong rule would have both high support
and high confidence (Koperski, Han and Adhikary 1998). Koperski and Han use
algorithms similar to those of Agrawal et al. to build the requisite large itemsets
or predicatesets, integrating features required by the Spatial DBMS.

Another instance of spatial data mining of interest to us is the mining of
image or raster data. Contrary to the earlier quote, spatial data mining does not

have to be on an explicit spatial database but can be performed on a large image
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database containing spatial data of a different kind, often from a remote sensing
source. Koperski, Han and Adhikary (1998) say that this differs from ordinary

“image processing” in scale:

... data mining studies very large amounts of data ... while image

processing usually concentrates on analysis of single or a few images.

This kind of approach is applied when some kind of automated image analysis such
as object detection or pattern matching is needed. A famous example is the work
done by Burl et al. (1998) on recognizing volcanoes on the planet Venus. Mining
on 30,000+ radar images from the Magellan probe, they were able to achieve
an 80% accuracy rate with their system. The system consisted of three major

components:

1. Data focusing to examine the image pixels (the building block of the images)
and their neighbors to decide on the image areas to proceed on;

2. Feature extraction to glean necessary attributes and metrics (e.g.,
eigenvectors) from the found areas;

3. Classification learning which actually answers the question “volcano/not
volcano” or learns from human expert examples how to do this based on
the attributes from the last component.

This example is important because much of the spatial data coming in from
field observation (e.g. satellite radar, aerial photos, seafloor SONAR, etc.) is
indeed raw image data without the niceties of spatial objects structures, MBRs,

etc. As such, much of the required work must be done here, at the image arrival

point.



CHAPTER III
RESEARCH PLAN

3.1 Hypothesis

As was mentioned earlier, Bloch’s fuzzy spatial techniques for 2D space can
be applied to partitioned image data (i.e., containing discrete objects) to produce
meta-data about the objects contained therein. This requires what is for the most
part an implementation of Bloch’s techniques, with the output customized for our
purposes. After the meta-data has been extracted, we will apply association rule
mining algorithms to these intermediate spatial relationship data to mine fuzzy
association rules describing the general nature of the image components. However,
as mentioned in the Literature Review, the existing fuzzy rule mining techniques
(Kuok, Fu and Wong 1998) are designed for the general milieu of “traditional” non-
spatial databases (e.g., age, price, etc.). Extensive modification of these will be
required to properly mine our spatially derived meta-data to produce meaningful
results. It is this adaptation and transformation of existing fuzzy rule techniques
to mate with the fuzzy spatial relation detection methods in order to create a
unified system to provide useful and interesting generalized information that is the
focus of this inquiry.

Such a system will tackle some of the various unaddressed issues in the
previously discussed literature via this integration. The fuzzy spatial relation
work of Bloch usefully functions at the individual relation level, a specific object

R related to a specific object A. The proposed system will mine these to extract

31
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generalizations. The fuzzy association rules of Kuok, Fu and Wong add fuzziness
to the classic associations of Agrawal, Imielinski and Swami, but principally apply
it to ordinary non-spatial data. The proposed system will adapt these to a
spatial /image domain. And while Koperski, Han and Adhikary do offer a spatial
variation of association rule mining, it does not utilize fuzzy set theory. Indeed
they cite a “(f)uzzy sets approach (1998)” as one of the many future directions of

spatial data mining. The system proposed here takes up that challenge.

3.2 Methodology
We plan to use the fuzzy relative positioning techniques of Bloch (1999) to
collect orientation meta-data about pairs of objects, previously detected by some

other means. We can describe the scenario as:
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Given:
O = {o| ois an object in S}, set of all objects in space.
C = {c|cis the class of 0o € O}, set of all object class labels.

The relation:

isa(og,c;) where o, € ON¢; €C

is a classical, crisp relation associating an object o, with a class label ¢;.

Dy = {((0r,04), N3 (04), Mg (04), HZT@q)) | (0r,04) € O X O Nop # 04}

is a fuzzy relation, D = “in direction of”, or more specifically “o, is in direction «
of 0,.” In contrast to typical fuzzy relation notation, we have explicitly replaced
the single membership value, u, with three values: the pessimistic necessity, N,
the optimistic possibility, II, and the overall mean, M. These are the same as

those discussed on page 17 with R = o, and A = o, in this case. They have the

property:

0L0OSKN<S<MIZIILI1.0.

In other words, the necessity and possibility form an interval in which is found
the Mean - M € [N, II].
According to Bloch, this captures the inherent imprecision in the spatial

relationship (1999).
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For a given image-space, since we are examining the relationships between
pairs of objects, we will find such tuples for all 2-permutations of the image’s

object set (0. Thus, the number of such tuples is:

P(01.2) = (g g5 = 101+ (0] -

Note that we want ordered permutations - not unordered combinations since the
spatial relationships between objects are not commutative.
Furthermore, we will also not want to limit ourselves to a single « direction

but rather several primitive directions, such as right, above, left and below or
T 3m
A={0,=,m,—
{ ) 277r7 2 }

which can better describe the space in general.

Moreover, we will want to analyze not just an image but a set of images. This
gives us a transaction database of (|O;| - (|O;| — 1) - |A]) tuples for each image 4,
where (J; is the set of objects for image 7. This is the simple, naive case; it may
be possible to construct an effective pruning algorithm that obviates the need for
full computation.

Given these tuples we will then apply previously discussed rule mining
algorithms to them to extract rules. The exact nature of this mining, how field
attributes are interpreted, and what the resultant rules will look like present a few
difficulties.

How they are interpreted: While it is true that we may use natural numbers
or alphabetic characters to denote classes, these are categorical attributes and

not ordinal attributes. Class 2 is no closer to class 1 than class 7. As such, we
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can interpret class as a categorical attribute as described in Srikant and Agrawal
(1996).

The directional attributes may present somewhat more of a challenge.
Fortunately, the work of Kuok, Fu and Wong (1998) establishes a convenient
framework for interpreting direction. Kuok, Fu and Wong describe a set, of fuzzy
sets

Fik :{ z'lkv izkv z'?;a 12}
that are associated with the attribute i; in the set of attributes I. In our case,

the set A of primitive directions represents a partitioning of the attribute direction

aka D, into such fuzzy sets

Fp, = {fL]ba, f%a, f%a, f4Da} = {Right, Above, Le ft, Below}

The direction field of ordered pair of objects will have some degree of membership
in each of these four fuzzy sets. Such an arrangement is visualized in Figure 3.1.
The question then arises as to what this membership degree is. Recall that
we obtain three fuzzy membership values per pair per direction, necessity, mean,
and possibility, instead of a simple u value. The most likely candidate for use
in rule mining, at least initially, is the mean, M, which is most akin to a single
membership degree, being an average of such values. However, since we do generate
the other two values which form the membership range of the spatial relation, they

do have meaning and thus could be useful for mining. These could be split off to
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Figure 3.1: Primitive Direction Fuzzy Sets

form sub-attributes with their own analogous fuzzy sets:

1 2 3 4
FDaN = {fDaNafDaNafDaN’fDaN}

1 2 3 4
FDaM - {fDaMafDaMafDaMafDaM}

1 2 3 4
FDaH - {fDaﬂafDaHafDaﬂafDaH}

= {Right, Above, Left, Below}

each one using the membership value indicated. Rules could then be generated

taking some or all of these factors into account.

For the sake of consistency, one could also view the isa(object,, class;) relation

this way with sets for the class categorical attribute:

Faass = {fhaser [oassr -+ s ..} where n = |C|, the number of classes.
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Of course, isa() is a classical relation so the above actually represents the crisp
set specialization of a fuzzy set where membership is in {0, 1} rather than in [0, 1].
Also there is the further restriction that in our current approach, for a given tuple,
the class attribute can have full membership in one and only one of these sets, e.g.
Objectio cannot be in Classz3 AND Classg.
What the resultant rules will look like: If we adopt the attribute representation
scheme of Kuok, Fu and Wong it stands to reason that we could adopt their rule

representation as well. Recall their rule form was:

X is A=Y is B(s,c)

where X and Y are disjoint subsets of the set of all attributes I, A and B
contain the corresponding sets for those attributes, and s and ¢ are significance

and certainty. An alternative form would be:

Va(isa(x, A) = (Jy isa(y, B) A D,(z,y, membership > threshold)(s, c)

However, if we view isa(x, y) in the way noted above, this is really just an expansion
of the form of Kuok, Fu and Wong.

It is this form that we will use for the initial round of experiments. However,
subsequent experiments may require an extension to this arrangement to handle
multiple directions. The basic form of Kuok, Fu and Wong only allows for one
fuzzy set per attribute. That is, given our attribute D, in Y for example,
the accompanying set B of fuzzy sets can contain only one of the fuzzy sets
in Fp, = {Right, Above, Left, Below}. But we may want to find rules about

multiple directions at the same time; one object may be both to the right of and
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above another object at the same time. To work around this, instead of viewing
direction as one attribute with four associated fuzzy sets, we could view it as four
attributes D, each with its own single fuzzy set in which it has some degree of
membership. This would allow the attribute set Y to potentially contain several
directional attributes simultaneously and give a rule taking them all into account.

Such a rule might be:

Va(isa(x, A) = (Jy isa(y, B)A Dy, (x,y, membership > threshold) A

D,,(x,y, membership > threshold)(s, c)

where D,, is the “Right” direction attribute and D,, is the “Above” direction
attribute.

A side effect of this extension is that if we do indeed separate the directions
this way and also use the previously discussed membership partitioning for
necessity and possibility, we could end up with direction becoming twelve separate,

albeit related, attributes:

Right | Above Left Below
Necessity | DooN | Do, ,N | Do, N | Dy, ,, N
Mean DooM | Da,;,M | Do, M | Dy, ,,M
Possibility | DgoIl | D, ,I1 | Do Il | Do, 11

This expansion could make mining more difficult, but on the other hand it could

allow for more expressive rules.
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3.3 Plan of Attack

In order to test the hypothesis, an initial system will be constructed based
on the methods discussed in the previous section. This system will be used as
an experimental test-bed for development and refinement of those methods. The
system will consist of a suite of modules to carry out the various tasks. Among

these modules will be:

e Synthetic Image Data Generator (SIDG) - A program for generating images
with known object distributions and relationships.

e Fuzzy Spatial Relation Detector (FSRD) - An implementation of Bloch’s
approach for fuzzy spatial relation detection in 2D space, chosen because
it has been shown to produce good meta-data for our purposes. It will be
applied to the images to produce tables of relation data, either as flat files or
more likely relational database tables, based on the relations above. There is
the potential problem of this method being computationally inefficient, but,
along with her basic algorithm, Bloch offers a propagation algorithm which
she claims is a good approximation of the regular one with a speed increase
upwards of 20x. In actuality, this is not a major concern since the FSRD is
just an intermediate step and not the main focus of this investigation.

Code to actually detect and tag the objects in the raw image files will also
be in this module.

e Fuzzy Association Rule Miner (FARM) - The heart of the system. This will
use algorithms in the literature, such as those of Kuok, Fu and Wong (1998)
or Srikant and Agrawal (1996) as a base for initial implementation. However,
to properly operate on the tables of Bloch based spatial meta-data, extensive
modification and redesign will be necessary to mine the desired spatial fuzzy
association rules, as detailed below.

e Other general utilities, such as a relational database management system like
Oracle or Postgres, as well as image file handling libraries will be incorporated
as needed.

The results of the FSRD applied to the synthetic data will be rows of spatial

relationships in a form like:
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Object ID | class | and || Ref OID | Other OID | a | N | M | II

With this preliminary system in place, an initial set of experiments will be
run applying the system to increasingly complex and varying synthetic images.
The SIDG will be used to create these synthetic images with known object
distributions for analysis, starting with arrangements of simple shapes (e.g.,
squares). Subsequent sets will add more complex objects, e.g., L’s, H’s and/or
O’s of varying sizes. Next more organic and irregular objects will be used. The
first program that will actually be run on this data will be the Bloch-based FSRD
which will generate the tabular meta-data whose format was outlined above. Tables
of this type will be the transaction database to be mined by the FARM module.
The results of this first trial will determine the path of subsequent iterations

of the system. The challenges of results analysis include:

e how to calculate and then apply significance and certainty, aka support
and confidence. The crisp measures of support and confidence are well
documented in Agrawal, Imielinski and Swami (1993), Agrawal and Srikant
(1994), and others. Kuok, Fu and Wong (1998) offer a modification as
significance and certainty for their fuzzy rules. Are these sufficient for our
purposes, or does the nature of mining on spatial relations rather than simple
attributes require a more refined approach?

e how to weigh the actual membership values. Considering that relations can
have membership in several fuzzy sets at the same time, might more attention
have to be paid to the weights of these memberships overall. Should a
membership normalization step, such as that proposed by Luo and Bridges
(2000), be integrated into subsequent versions?

e rule correctness. None of the above matters so much if accurate rules are not
being mined.

e rule usefulness and interestingness. Do the rules convey interesting - possibly
surprising - information about the database? More generally speaking,
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how well can we define interestingness and usefulness? There are not

necessarily any definitive quantitative metrics in this area. As is often

the case in computer science, it depends on the domain, the nature of the
data, and ultimately the judgement of the end-user. That is not to say
that investigations into this aspect of rule mining have not been mounted.

Matheus, Piatetsky-Shapiro and McNeil have offered some factors including

“novelty, utility, relevance, and statistical significance (1996)” as well as
“estimated benefit achievable through available actions (1996).” Some of
these are quantitative and objective, such as statistical significance. Others
are qualitative and subjective, the user being the arbiter of success.
Such analysis will indicate what revisions will have to be made in the system and
the subsequent round of experiments. Given that the initial system will mine
only on the mean, M, membership value (see page 17) and only on one of the
four primitive directions at a time (see discussion in Section 3.2), the rules from
the initial experiments will probably be rather limited. The previously discussed
extensions may need to be implemented.

One other concern that should be mentioned is that of system efficiency. We
will be performing several different steps in this investigation, each of which incurs
its own costs. For example, Bloch offers a complexity estimate of O(ngn4) where
ng = number of points in reference object R and n, = number of points in other
object A for her basic spatial relation computation. However, this is only for a
single object pair in an image, whereas we will be working on multiple images per
set, multiple objects per image, and multiple angles per pair (|O]- (|O| —1) - |4|
pairs per image as mentioned earlier). That is just one step in the process. While
Kuok, Fu and Wong do not give a specific big-O complexity estimate for their
algorithm (1998), we do know that association rule mining in general is a non-

trivial computation. That said, this is a preliminary investigation into fuzzy spatial

assocition rules in images. As such, efficiency is not of prime concern beyond
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experimental feasibility (i.e., can we run our tests in a reasonable amount of time).
Rather rule expressibility is the focus, with the building of an efficient “real-world”
production system left for subsequent research.

So the ultimate goal of the investigation will be to develop a fuzzy association
rule miner/spatial relation synthesis system that will recover interesting and
significant association rules describing known spatial patterns in the synthetic data.
At that point a brief application of this final system to the real data derived from
preprocessed NAVO sea-floor data can be done as a first foray into possible future

work.

3.4 Publication Plan
The results of these experiments will be submitted for publication at one of
the following conferences:

Conferences:

e International Conference on Knowledge Discovery and Data Mining
e IEEE International Fuzzy Systems Conference (FUZZ-IEEE)

e or one of the other national fuzzy logic conferences
Also submission for publication will be made to one of the following journals:

e Fuzzy Sets and Systems - ISSN: 0165-0114
e [EEFE Trans. on Fuzzy Systems (T-FUZZ) - ISSN: 1063-6706

e [EEFE Trans. on Knowledge and Data Engineering (T-KDE) - ISSN: 1041-
4347

e [EEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI) -
ISSN: 0162-8828

e International Journal of Intelligent Systems - ISSN: 0884-8173
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